Finitely strongly measurable functions in Lp #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Functions in Lp for 0 < p < ∞ are finitely strongly measurable.
Main statements #
mem_ℒp.ae_fin_strongly_measurable: ifmem_ℒp f p μwith0 < p < ∞, thenae_fin_strongly_measurable f μ.Lp.fin_strongly_measurable: for0 < p < ∞,Lpfunctions are finitely strongly measurable.
References #
- Hytönen, Tuomas, Jan Van Neerven, Mark Veraar, and Lutz Weis. Analysis in Banach spaces. Springer, 2016.
 
    
theorem
measure_theory.mem_ℒp.fin_strongly_measurable_of_strongly_measurable
    {α : Type u_1}
    {G : Type u_2}
    {p : ennreal}
    {m0 : measurable_space α}
    {μ : measure_theory.measure α}
    [normed_add_comm_group G]
    {f : α → G}
    (hf : measure_theory.mem_ℒp f p μ)
    (hf_meas : measure_theory.strongly_measurable f)
    (hp_ne_zero : p ≠ 0)
    (hp_ne_top : p ≠ ⊤) :
    
theorem
measure_theory.mem_ℒp.ae_fin_strongly_measurable
    {α : Type u_1}
    {G : Type u_2}
    {p : ennreal}
    {m0 : measurable_space α}
    {μ : measure_theory.measure α}
    [normed_add_comm_group G]
    {f : α → G}
    (hf : measure_theory.mem_ℒp f p μ)
    (hp_ne_zero : p ≠ 0)
    (hp_ne_top : p ≠ ⊤) :
    
theorem
measure_theory.integrable.ae_fin_strongly_measurable
    {α : Type u_1}
    {G : Type u_2}
    {m0 : measurable_space α}
    {μ : measure_theory.measure α}
    [normed_add_comm_group G]
    {f : α → G}
    (hf : measure_theory.integrable f μ) :
    
theorem
measure_theory.Lp.fin_strongly_measurable
    {α : Type u_1}
    {G : Type u_2}
    {p : ennreal}
    {m0 : measurable_space α}
    {μ : measure_theory.measure α}
    [normed_add_comm_group G]
    (f : ↥(measure_theory.Lp G p μ))
    (hp_ne_zero : p ≠ 0)
    (hp_ne_top : p ≠ ⊤) :