Complex trigonometric functions #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Basic facts and derivatives for the complex trigonometric functions.
Several facts about the real trigonometric functions have the proofs deferred here, rather than
analysis.special_functions.trigonometric.basic
,
as they are most easily proved by appealing to the corresponding fact for complex trigonometric
functions, or require additional imports which are not available in that file.
theorem
complex.tan_add
{x y : ℂ}
(h : ((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * ↑real.pi / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * ↑real.pi / 2) ∨ (∃ (k : ℤ), x = (2 * ↑k + 1) * ↑real.pi / 2) ∧ ∃ (l : ℤ), y = (2 * ↑l + 1) * ↑real.pi / 2) :
complex.tan (x + y) = (complex.tan x + complex.tan y) / (1 - complex.tan x * complex.tan y)
theorem
complex.tan_two_mul
{z : ℂ} :
complex.tan (2 * z) = 2 * complex.tan z / (1 - complex.tan z ^ 2)
theorem
complex.tan_add_mul_I
{x y : ℂ}
(h : ((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * ↑real.pi / 2) ∧ ∀ (l : ℤ), y * complex.I ≠ (2 * ↑l + 1) * ↑real.pi / 2) ∨ (∃ (k : ℤ), x = (2 * ↑k + 1) * ↑real.pi / 2) ∧ ∃ (l : ℤ), y * complex.I = (2 * ↑l + 1) * ↑real.pi / 2) :
complex.tan (x + y * complex.I) = (complex.tan x + complex.tanh y * complex.I) / (1 - complex.tan x * complex.tanh y * complex.I)
theorem
complex.tan_eq
{z : ℂ}
(h : ((∀ (k : ℤ), ↑(z.re) ≠ (2 * ↑k + 1) * ↑real.pi / 2) ∧ ∀ (l : ℤ), ↑(z.im) * complex.I ≠ (2 * ↑l + 1) * ↑real.pi / 2) ∨ (∃ (k : ℤ), ↑(z.re) = (2 * ↑k + 1) * ↑real.pi / 2) ∧ ∃ (l : ℤ), ↑(z.im) * complex.I = (2 * ↑l + 1) * ↑real.pi / 2) :
complex.tan z = (complex.tan ↑(z.re) + complex.tanh ↑(z.im) * complex.I) / (1 - complex.tan ↑(z.re) * complex.tanh ↑(z.im) * complex.I)
@[continuity]