Spectral maps #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines spectral maps. A map is spectral when it's continuous and the preimage of a compact open set is compact open.
Main declarations #
is_spectral_map
: Predicate for a map to be spectral.spectral_map
: Bundled spectral maps.spectral_map_class
: Typeclass for a type to be a type of spectral maps.
TODO #
Once we have spectral_space
, is_spectral_map
should move to topology.spectral.basic
.
- to_continuous : continuous f
- is_compact_preimage_of_is_open : ∀ ⦃s : set β⦄, is_open s → is_compact s → is_compact (f ⁻¹' s)
A function between topological spaces is spectral if it is continuous and the preimage of every compact open set is compact open.
- to_fun : α → β
- spectral' : is_spectral_map self.to_fun
The type of spectral maps from α
to β
.
Instances for spectral_map
- spectral_map.has_sizeof_inst
- spectral_map.has_coe_t
- spectral_map.spectral_map_class
- spectral_map.has_coe_to_fun
- spectral_map.inhabited
- coe : F → Π (a : α), (λ (_x : α), β) a
- coe_injective' : function.injective spectral_map_class.coe
- map_spectral : ∀ (f : F), is_spectral_map ⇑f
spectral_map_class F α β
states that F
is a type of spectral maps.
You should extend this class when you extend spectral_map
.
Instances of this typeclass
Instances of other typeclasses for spectral_map_class
- spectral_map_class.has_sizeof_inst
Equations
- spectral_map_class.to_continuous_map_class = {coe := spectral_map_class.coe _inst_3, coe_injective' := _, map_continuous := _}
Spectral maps #
Reinterpret a spectral_map
as a continuous_map
.
Equations
- f.to_continuous_map = {to_fun := f.to_fun, continuous_to_fun := _}
Equations
- spectral_map.spectral_map_class = {coe := spectral_map.to_fun _inst_2, coe_injective' := _, map_spectral := _}
Helper instance for when there's too many metavariables to apply fun_like.has_coe_to_fun
directly.
Copy of a spectral_map
with a new to_fun
equal to the old one. Useful to fix definitional
equalities.
id
as a spectral_map
.
Equations
- spectral_map.inhabited α = {default := spectral_map.id α _inst_1}
Composition of spectral_map
s as a spectral_map
.
Equations
- f.comp g = {to_fun := ⇑(f.to_continuous_map.comp g.to_continuous_map), spectral' := _}