mathlib3 documentation

measure_theory.function.special_functions.is_R_or_C

Measurability of the basic is_R_or_C functions #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

@[measurability]
@[measurability]
@[measurability]
theorem measurable.re {α : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] {m : measurable_space α} {f : α 𝕜} (hf : measurable f) :
measurable (λ (x : α), is_R_or_C.re (f x))
@[measurability]
theorem ae_measurable.re {α : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] {m : measurable_space α} {f : α 𝕜} {μ : measure_theory.measure α} (hf : ae_measurable f μ) :
ae_measurable (λ (x : α), is_R_or_C.re (f x)) μ
@[measurability]
theorem measurable.im {α : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] {m : measurable_space α} {f : α 𝕜} (hf : measurable f) :
measurable (λ (x : α), is_R_or_C.im (f x))
@[measurability]
theorem ae_measurable.im {α : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] {m : measurable_space α} {f : α 𝕜} {μ : measure_theory.measure α} (hf : ae_measurable f μ) :
ae_measurable (λ (x : α), is_R_or_C.im (f x)) μ
@[measurability]
theorem is_R_or_C.measurable_of_real {𝕜 : Type u_2} [is_R_or_C 𝕜] :
theorem measurable_of_re_im {α : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [measurable_space α] {f : α 𝕜} (hre : measurable (λ (x : α), is_R_or_C.re (f x))) (him : measurable (λ (x : α), is_R_or_C.im (f x))) :
theorem ae_measurable_of_re_im {α : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [measurable_space α] {f : α 𝕜} {μ : measure_theory.measure α} (hre : ae_measurable (λ (x : α), is_R_or_C.re (f x)) μ) (him : ae_measurable (λ (x : α), is_R_or_C.im (f x)) μ) :