mathlib documentation

analysis.special_functions.gamma.beta

The Beta function, and further properties of the Gamma function #

In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations.

Results on the Beta function #

Results on the Gamma function #

The Beta function #

noncomputable def complex.beta_integral (u v : ) :

The Beta function Β (u, v), defined as ∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1).

Equations
theorem complex.beta_integral_convergent_left {u : } (hu : 0 < u.re) (v : ) :
interval_integrable (λ (x : ), x ^ (u - 1) * (1 - x) ^ (v - 1)) measure_theory.measure_space.volume 0 (1 / 2)

Auxiliary lemma for beta_integral_convergent, showing convergence at the left endpoint.

theorem complex.beta_integral_convergent {u v : } (hu : 0 < u.re) (hv : 0 < v.re) :

The Beta integral is convergent for all u, v of positive real part.

theorem complex.beta_integral_eval_one_right {u : } (hu : 0 < u.re) :
u.beta_integral 1 = 1 / u
theorem complex.beta_integral_scaled (s t : ) {a : } (ha : 0 < a) :
(x : ) in 0..a, x ^ (s - 1) * (a - x) ^ (t - 1) = a ^ (s + t - 1) * s.beta_integral t
theorem complex.Gamma_mul_Gamma_eq_beta_integral {s t : } (hs : 0 < s.re) (ht : 0 < t.re) :

Relation between Beta integral and Gamma function.

theorem complex.beta_integral_recurrence {u v : } (hu : 0 < u.re) (hv : 0 < v.re) :
u * u.beta_integral (v + 1) = v * (u + 1).beta_integral v

Recurrence formula for the Beta function.

theorem complex.beta_integral_eval_nat_add_one_right {u : } (hu : 0 < u.re) (n : ) :
u.beta_integral (n + 1) = (n.factorial) / (finset.range (n + 1)).prod (λ (j : ), u + j)

Explicit formula for the Beta function when second argument is a positive integer.

The Euler limit formula #

noncomputable def complex.Gamma_seq (s : ) (n : ) :

The sequence with n-th term n ^ s * n! / (s * (s + 1) * ... * (s + n)), for complex s. We will show that this tends to Γ(s) as n → ∞.

Equations
theorem complex.Gamma_seq_eq_beta_integral_of_re_pos {s : } (hs : 0 < s.re) (n : ) :
theorem complex.Gamma_seq_add_one_left (s : ) {n : } (hn : n 0) :
(s + 1).Gamma_seq n / s = n / (n + 1 + s) * s.Gamma_seq n
theorem complex.Gamma_seq_eq_approx_Gamma_integral {s : } (hs : 0 < s.re) {n : } (hn : n 0) :
s.Gamma_seq n = (x : ) in 0..n, ((1 - x / n) ^ n) * x ^ (s - 1)
theorem complex.approx_Gamma_integral_tendsto_Gamma_integral {s : } (hs : 0 < s.re) :
filter.tendsto (λ (n : ), (x : ) in 0..n, ((1 - x / n) ^ n) * x ^ (s - 1)) filter.at_top (nhds (complex.Gamma s))

The main techical lemma for Gamma_seq_tendsto_Gamma, expressing the integral defining the Gamma function for 0 < re s as the limit of a sequence of integrals over finite intervals.

Euler's limit formula for the complex Gamma function.

The reflection formula #

theorem complex.Gamma_seq_mul (z : ) {n : } (hn : n 0) :
z.Gamma_seq n * (1 - z).Gamma_seq n = n / (n + 1 - z) * (1 / (z * (finset.range n).prod (λ (j : ), 1 - z ^ 2 / (j + 1) ^ 2)))

Euler's reflection formula for the complex Gamma function.

theorem complex.Gamma_ne_zero {s : } (hs : (m : ), s -m) :

The Gamma function does not vanish on (except at non-positive integers, where the function is mathematically undefined and we set it to 0 by convention).

noncomputable def real.Gamma_seq (s : ) (n : ) :

The sequence with n-th term n ^ s * n! / (s * (s + 1) * ... * (s + n)), for real s. We will show that this tends to Γ(s) as n → ∞.

Equations

Euler's limit formula for the real Gamma function.

Euler's reflection formula for the real Gamma function.

The reciprocal Gamma function #

We show that the reciprocal Gamma function 1 / Γ(s) is entire. These lemmas show that (in this case at least) mathlib's conventions for division by zero do actually give a mathematically useful answer! (These results are useful in the theory of zeta and L-functions.)

A reformulation of the Gamma recurrence relation which is true for s = 0 as well.

The reciprocal of the Gamma function is differentiable everywhere (including the points where Gamma itself is not).