The category of bounded orders #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This defines BddOrd
, the category of bounded orders.
- to_PartOrd : PartOrd
- is_bounded_order : bounded_order ↥(self.to_PartOrd)
The category of bounded orders with monotone functions.
Instances for BddOrd
@[protected, instance]
@[protected, instance]
Equations
- X.partial_order = X.to_PartOrd.str
Construct a bundled BddOrd
from a fintype
partial_order
.
@[simp]
@[protected, instance]
Equations
@[protected, instance]
Equations
- BddOrd.large_category = {to_category_struct := {to_quiver := {hom := λ (X Y : BddOrd), bounded_order_hom ↥X ↥Y}, id := λ (X : BddOrd), bounded_order_hom.id ↥X, comp := λ (X Y Z : BddOrd) (f : X ⟶ Y) (g : Y ⟶ Z), bounded_order_hom.comp g f}, id_comp' := BddOrd.large_category._proof_1, comp_id' := BddOrd.large_category._proof_2, assoc' := BddOrd.large_category._proof_3}
@[protected, instance]
Equations
- BddOrd.concrete_category = category_theory.concrete_category.mk {obj := coe_sort BddOrd.has_coe_to_sort, map := λ (X Y : BddOrd), coe_fn, map_id' := BddOrd.concrete_category._proof_1, map_comp' := BddOrd.concrete_category._proof_2}
@[protected, instance]
Equations
- BddOrd.has_forget_to_PartOrd = {forget₂ := {obj := λ (X : BddOrd), X.to_PartOrd, map := λ (X Y : BddOrd), bounded_order_hom.to_order_hom, map_id' := BddOrd.has_forget_to_PartOrd._proof_1, map_comp' := BddOrd.has_forget_to_PartOrd._proof_2}, forget_comp := BddOrd.has_forget_to_PartOrd._proof_3}
@[protected, instance]
Equations
- BddOrd.has_forget_to_Bipointed = {forget₂ := {obj := λ (X : BddOrd), {X := ↥X, to_prod := (⊥, ⊤)}, map := λ (X Y : BddOrd) (f : X ⟶ Y), {to_fun := ⇑f, map_fst := _, map_snd := _}, map_id' := BddOrd.has_forget_to_Bipointed._proof_3, map_comp' := BddOrd.has_forget_to_Bipointed._proof_4}, forget_comp := BddOrd.has_forget_to_Bipointed._proof_5}
order_dual
as a functor.
@[simp]
Constructs an equivalence between bounded orders from an order isomorphism between them.
Equations
- BddOrd.iso.mk e = {hom := ↑e, inv := ↑(e.symm), hom_inv_id' := _, inv_hom_id' := _}
The equivalence between BddOrd
and itself induced by order_dual
both ways.
Equations
- BddOrd.dual_equiv = category_theory.equivalence.mk BddOrd.dual BddOrd.dual (category_theory.nat_iso.of_components (λ (X : BddOrd), BddOrd.iso.mk (order_iso.dual_dual ↥X)) BddOrd.dual_equiv._proof_1) (category_theory.nat_iso.of_components (λ (X : BddOrd), BddOrd.iso.mk (order_iso.dual_dual ↥X)) BddOrd.dual_equiv._proof_2)