foundational types
Some of Lean's types are not defined in any Lean source files (even the prelude
) since they come from its foundational type theory. This page provides basic documentation for these types.
For a more in-depth explanation of Lean's type theory, refer to TPiL.
Sort u
#
Sort u
is the type of types in Lean, and Sort u : Sort (u + 1)
.
Instances for Sort u
Type u
#
Type u
is notation for Sort (u + 1)
.
Instances for Type u
- set_like.has_coe_to_sort
- set.has_coe_to_sort
- finset.has_coe_to_sort
- cardinal.is_equivalent
- cardinal.can_lift_cardinal_Type
- wide_subquiver_has_coe_to_sort
- category_theory.types
- category_theory.sort.split_epi_category
- category_theory.bundled.has_coe_to_sort
- category_theory.Cat.has_coe_to_sort
- category_theory.concrete_category.types
- Mon.has_coe_to_sort
- AddMon.has_coe_to_sort
- CommMon.has_coe_to_sort
- AddCommMon.has_coe_to_sort
- Group.has_coe_to_sort
- AddGroup.has_coe_to_sort
- CommGroup.has_coe_to_sort
- AddCommGroup.has_coe_to_sort
- category_theory.limits.types.has_limits_of_size
- category_theory.limits.types.sort.category_theory.limits.has_limits
- category_theory.limits.types.has_colimits_of_size
- category_theory.limits.types.sort.category_theory.limits.has_colimits
- category_theory.limits.types.sort.category_theory.limits.has_images
- category_theory.limits.types.sort.category_theory.limits.has_image_maps
- category_theory.types_monoidal
- category_theory.types_symmetric
- Module.has_coe_to_sort
- Rep.has_coe_to_sort
- fdRep.has_coe_to_sort
- category_theory.projective.Type.enough_projectives
- Fintype.has_coe_to_sort
- Preord.has_coe_to_sort
- PartOrd.has_coe_to_sort
- FinPartOrd.has_coe_to_sort
- Lat.has_coe_to_sort
- LinOrd.has_coe_to_sort
- NonemptyFinLinOrd.has_coe_to_sort
- Top.has_coe_to_sort
- Meas.has_coe_to_sort
- discrete_quotient.has_coe_to_sort
- category_theory.Groupoid.has_coe_to_sort
- UniformSpace.has_coe_to_sort
- CpltSepUniformSpace.has_coe_to_sort
- SemiRing.has_coe_to_sort
- Ring.has_coe_to_sort
- CommSemiRing.has_coe_to_sort
- CommRing.has_coe_to_sort
- TopCommRing.has_coe_to_sort
- Born.has_coe_to_sort
- CompHaus.has_coe_to_sort
- Frm.has_coe_to_sort
- Locale.has_coe_to_sort
- Profinite.has_coe_to_sort
- Compactum.has_coe_to_sort
- category_theory.types.finitary_extensive
- category_theory.type.adhesive
- category_theory.injective.Type.enough_injectives
- sort.category_theory.well_powered
- category_theory.sort.limits.has_finite_products
- category_theory.sort.cartesian_closed
- category_theory.limits.mono_coprod.mono_coprod_type
- category_theory.Mat.has_coe_to_sort
- Pointed.has_coe_to_sort
- Bipointed.has_coe_to_sort
- Twop.has_coe_to_sort
- category_theory.Quiv.has_coe_to_sort
- PartialFun.has_coe_to_sort
- Algebra.has_coe_to_sort
- SemiNormedGroup.has_coe_to_sort
- SemiNormedGroup₁.has_coe_to_sort
- BddOrd.has_coe_to_sort
- SemilatSup.has_coe_to_sort
- SemilatInf.has_coe_to_sort
- BddLat.has_coe_to_sort
- DistLat.has_coe_to_sort
- BddDistLat.has_coe_to_sort
- HeytAlg.has_coe_to_sort
- BoolAlg.has_coe_to_sort
- FinBddDistLat.has_coe_to_sort
- FinBoolAlg.has_coe_to_sort
- CompleteLat.has_coe_to_sort
- ωCPO.has_coe_to_sort
- GroupWithZero.has_coe_to_sort
- BoolRing.has_coe_to_sort
- Magma.has_coe_to_sort
- AddMagma.has_coe_to_sort
- Semigroup.has_coe_to_sort
- AddSemigroup.has_coe_to_sort
- multiset.has_coe_to_sort
- first_order.language.Theory.Model.has_coe_to_sort
- algebraic_geometry.LocallyRingedSpace.has_coe_to_sort
Prop
#
Prop
is notation for Sort 0
.
Instances for Prop
- is_symm_op_of_is_symm
- prop.inhabited
- coe_bool_to_Prop
- coe_sort_bool
- iff.is_refl
- iff.is_trans
- xor.is_commutative
- sort.nontrivial
- Prop.has_compl
- Prop.has_le
- Prop.partial_order
- Prop.distrib_lattice
- Prop.bounded_order
- Prop.le_is_total
- Prop.linear_order
- Prop.heyting_algebra
- Prop.boolean_algebra
- Prop.complete_lattice
- Prop.complete_linear_order
- Prop.complete_boolean_algebra
- Prop.fintype
- Prop.countable'
- Prop.encodable
- sierpinski_space
- Prop.measurable_space
- Prop.measurable_singleton_class
- slim_check.Prop.sampleable_ext
- Prop.has_variable_names
Pi types, Π a : α, β a
#
The type of dependent functions is known as a pi type. Non-dependent functions and implications are a special case.
Note that these can also be written with the alternative notations:
∀ a : α, β a
, conventionally used whereβ a : Prop
.α → γ
, possible only ifβ a = γ
for alla
.
Lean also permits ASCII-only spellings of the three variants:
Pi a : A, B a
forΠ a : α, β a
forall a : A, B a
for∀ a : α, β a
A -> B
, forα → β
Note that despite not itself being a function, (→)
is available as infix notation for
λ α β, α → β
.
Instances for Π a : α, β a
- fun_like.has_coe_to_fun
- pi.inhabited
- pi.subsingleton
- lift_pi_range
- pi.nonempty
- pi.can_lift
- pi_subtype.can_lift
- applicative_transformation.has_coe_to_fun
- pi_setoid
- pi.is_empty
- pi.unique
- pi.unique_of_is_empty
- pi.nontrivial
- pi.has_compl
- pi.has_le
- pi.preorder
- pi.partial_order
- pi.has_sdiff
- pi.densely_ordered
- pi.has_one
- pi.has_zero
- pi.has_mul
- pi.has_add
- pi.has_smul
- pi.has_vadd
- pi.has_pow
- pi.has_inv
- pi.has_neg
- pi.has_div
- pi.has_sub
- pi.no_max_order
- pi.no_min_order
- pi.has_sup
- pi.has_inf
- pi.semilattice_sup
- pi.semilattice_inf
- pi.lattice
- pi.distrib_lattice
- pi.has_bot
- pi.has_top
- pi.order_top
- pi.order_bot
- pi.bounded_order
- pi.has_himp
- pi.has_hnot
- pi.generalized_heyting_algebra
- pi.generalized_coheyting_algebra
- pi.heyting_algebra
- pi.coheyting_algebra
- pi.boolean_algebra
- set.pi_set_coe.can_lift
- pi.has_nat_cast
- pi.add_monoid_with_one
- pi.has_int_cast
- pi.add_group_with_one
- pi.has_Sup
- pi.has_Inf
- pi.complete_lattice
- pi.frame
- pi.coframe
- pi.complete_distrib_lattice
- pi.complete_boolean_algebra
- finset.pi_finset_coe.can_lift
- pfun_fintype
- pi.semigroup
- pi.add_semigroup
- pi.semigroup_with_zero
- pi.comm_semigroup
- pi.add_comm_semigroup
- pi.mul_one_class
- pi.add_zero_class
- pi.monoid
- pi.add_monoid
- pi.comm_monoid
- pi.add_comm_monoid
- pi.div_inv_monoid
- pi.sub_neg_monoid
- pi.has_involutive_inv
- pi.has_involutive_neg
- pi.division_monoid
- pi.subtraction_monoid
- pi.division_comm_monoid
- pi.subtraction_comm_monoid
- pi.group
- pi.add_group
- pi.comm_group
- pi.add_comm_group
- pi.left_cancel_semigroup
- pi.add_left_cancel_semigroup
- pi.right_cancel_semigroup
- pi.add_right_cancel_semigroup
- pi.left_cancel_monoid
- pi.add_left_cancel_monoid
- pi.right_cancel_monoid
- pi.add_right_cancel_monoid
- pi.cancel_monoid
- pi.add_cancel_monoid
- pi.cancel_comm_monoid
- pi.add_cancel_comm_monoid
- pi.mul_zero_class
- pi.mul_zero_one_class
- pi.monoid_with_zero
- pi.comm_monoid_with_zero
- pi.fintype
- pi.distrib
- pi.non_unital_non_assoc_semiring
- pi.non_unital_semiring
- pi.non_assoc_semiring
- pi.semiring
- pi.non_unital_comm_semiring
- pi.comm_semiring
- pi.non_unital_non_assoc_ring
- pi.non_unital_ring
- pi.non_assoc_ring
- pi.ring
- pi.non_unital_comm_ring
- pi.comm_ring
- pi.has_smul'
- pi.has_vadd'
- pi.is_scalar_tower
- pi.vadd_assoc_class
- pi.is_scalar_tower'
- pi.vadd_assoc_class'
- pi.is_scalar_tower''
- pi.vadd_assoc_class''
- pi.smul_comm_class
- pi.vadd_comm_class
- pi.smul_comm_class'
- pi.vadd_comm_class'
- pi.smul_comm_class''
- pi.vadd_comm_class''
- pi.is_central_scalar
- pi.is_central_vadd
- pi.has_faithful_smul
- pi.has_faithful_vadd
- pi.mul_action
- pi.add_action
- pi.mul_action'
- pi.add_action'
- pi.smul_zero_class
- pi.smul_zero_class'
- pi.distrib_smul
- pi.distrib_smul'
- pi.distrib_mul_action
- pi.distrib_mul_action'
- pi.mul_distrib_mul_action
- pi.mul_distrib_mul_action'
- pi.smul_with_zero
- pi.smul_with_zero'
- pi.mul_action_with_zero
- pi.mul_action_with_zero'
- pi.module
- pi.module'
- pi.no_zero_smul_divisors
- pi.countable
- pi.infinite_of_left
- pi.infinite_of_right
- pi.finite
- dfinsupp.has_coe_to_fun
- pi.conditionally_complete_lattice
- pi.omega_complete_partial_order
- pi.algebra
- pi.idem_semiring
- pi.idem_comm_semiring
- pi.kleene_algebra
- encodable.fin_pi
- small_Pi
- module.finite.pi
- is_noetherian_pi
- direct_sum.has_coe_to_fun
- pi.has_star
- pi.has_trivial_star
- pi.has_involutive_star
- pi.star_semigroup
- pi.star_add_monoid
- pi.star_ring
- pi.star_module
- module.free.pi
- finite_dimensional.finite_dimensional_pi'
- is_artinian_pi
- pi.ordered_comm_monoid
- pi.ordered_add_comm_monoid
- pi.has_exists_mul_of_le
- pi.has_exists_add_of_le
- pi.canonically_ordered_monoid
- pi.canonically_ordered_add_monoid
- pi.ordered_cancel_comm_monoid
- pi.ordered_cancel_add_comm_monoid
- pi.ordered_comm_group
- pi.ordered_add_comm_group
- pi.ordered_semiring
- pi.ordered_comm_semiring
- pi.ordered_ring
- pi.ordered_comm_ring
- pi.ordered_smul
- Pi.topological_space
- Pi.discrete_topology
- topological_space.pi.first_countable_topology
- topological_space.pi.second_countable_topology
- pi.compact_space
- pi.locally_compact_space_of_finite
- pi.locally_compact_space
- pi.sigma_compact_space
- pi.preconnected_space
- pi.connected_space
- pi.totally_disconnected_space
- pi.t0_space
- pi.t1_space
- Pi.t2_space
- pi.regular_space
- pi.t3_space
- pi.order_closed_topology
- Pi.uniform_space
- Pi.complete
- Pi.separated
- pi.add_torsor
- pi.has_continuous_const_smul
- pi.has_continuous_const_vadd
- pi.has_continuous_smul
- pi.has_continuous_vadd
- pi.has_continuous_mul
- pi.has_continuous_add
- pi.has_continuous_inv
- pi.has_continuous_neg
- pi.topological_group
- pi.topological_add_group
- pi.has_continuous_star
- pi.topological_semiring
- pi.topological_ring
- pi.Sup_convergence_class
- pi.Inf_convergence_class
- pi.compact_Icc_space
- pseudo_emetric_space_pi
- emetric_space_pi
- pi.bornology
- pi.bounded_space
- pseudo_metric_space_pi
- pi_proper_space
- metric_space_pi
- pi.has_isometric_smul
- pi.has_isometric_vadd
- pi.has_isometric_smul'
- pi.has_isometric_vadd'
- pi.has_isometric_smul''
- pi.has_isometric_vadd''
- pi.seminormed_group
- pi.seminormed_add_group
- pi.seminormed_comm_group
- pi.seminormed_add_comm_group
- pi.normed_group
- pi.normed_add_group
- pi.normed_comm_group
- pi.normed_add_comm_group
- pi.bounded_le_nhds_class
- pi.bounded_ge_nhds_class
- pi.norm_one_class
- pi.non_unital_semi_normed_ring
- pi.semi_normed_ring
- pi.non_unital_normed_ring
- pi.normed_ring
- pi.normed_space
- pi.normed_algebra
- pi.star_ring'
- pi.cstar_ring
- measurable_space.pi
- pi.measurable_singleton_class
- pi.has_measurable_mul
- pi.has_measurable_add
- pi.has_measurable_mul₂
- pi.has_measurable_add₂
- pi.has_measurable_div
- pi.has_measurable_sub
- pi.has_measurable_div₂
- pi.has_measurable_sub₂
- pi.has_measurable_inv
- pi.has_measurable_neg
- pi.has_measurable_smul
- pi.has_measurable_vadd
- pi.opens_measurable_space
- pi.borel_space
- measure_theory.measure_space.pi
- pi.rootable_by
- pi.divisible_by
- path.has_uncurry_path
- continuous_multilinear_map.continuous_map_class
- filter.product.has_coe_t
- topological_space.pseudo_metrizable_space_pi
- topological_space.metrizable_space_pi
- pi.has_variable_names
- category_theory.pi
- category_theory.pi'
- category_theory.groupoid_pi
- polish_space.pi_countable
- lp.pi.has_coe
- lp.has_coe_to_fun
- pi.algebra_of_normed_algebra
- pi.locally_convex_space
- category_theory.grothendieck_topology.has_coe_to_fun
- category_theory.grothendieck_topology.cover.has_coe_to_fun
- category_theory.pretopology.has_coe_to_fun
- category_theory.meq.has_coe_to_fun
- pi.has_fix
- pi.pi.lawful_fix'
- pi.matrix_algebra
- pi.matrix_topological_ring
- pi_charted_space
- smooth_bump_covering.has_coe_to_fun
- cont_mdiff_section.has_coe_to_fun
- fin_enum.pi.fin_enum
- fin_enum.pfun_fin_enum
- pi.well_founded_lt
- pi.locally_finite_order
- pi.locally_finite_order_bot
- pi.locally_finite_order_top
- is_nilpotent_pi
Instances for ∀ a : α, β a
- forall_prop_decidable
- list.decidable_ball
- option.decidable_forall_mem
- bool.decidable_forall_bool
- pi.can_lift
- set.can_lift
- nat.decidable_ball_lt
- nat.decidable_forall_fin
- nat.decidable_ball_le
- nat.decidable_lo_hi
- nat.decidable_lo_hi_le
- list.can_lift
- multiset.can_lift
- multiset.decidable_dforall_multiset
- finset.decidable_dforall_finset
- finset.can_lift
- fintype.decidable_forall_fintype
- fintype.decidable_surjective_fintype
- finset.decidable_forall_of_decidable_subsets
- finset.decidable_forall_of_decidable_ssubsets
- nnreal.continuous_map.can_lift
- continuous_map.can_lift
- int.decidable_le_lt
- int.decidable_le_le
- int.decidable_lt_lt
- int.decidable_lt_le
- simple_graph.connected.has_coe_to_fun
Instances for α → β
- slash_invariant_form.slash_invariant_form_class.coe_to_fun
- lift_fn
- lift_fn_range
- lift_fn_dom
- expr.has_coe_to_fun
- interaction_monad.monad
- interaction_monad.monad_fail
- tactic.alternative
- interactive.executor_tactic
- tactic.opt_to_tac
- tactic.ex_to_tac
- tactic.andthen_seq
- tactic.andthen_seq_focus
- lean.parser.alternative
- lean.parser.has_coe
- state_t.monad_run
- reader_t.monad_run
- smt_tactic.has_monad_lift
- smt_tactic.has_coe
- widget.component.has_coe_to_fun
- widget.tc.has_coe_to_fun
- thunk.has_reflect
- tactic.tactic.has_to_tactic_format
- function.has_uncurry_base
- function.has_uncurry_induction
- pi_subtype.can_lift'
- function.nontrivial
- equiv.has_coe_to_fun
- one_hom.has_coe_to_fun
- zero_hom.has_coe_to_fun
- mul_hom.has_coe_to_fun
- add_hom.has_coe_to_fun
- monoid_hom.has_coe_to_fun
- add_monoid_hom.has_coe_to_fun
- monoid_with_zero_hom.has_coe_to_fun
- equiv.function.bijective.can_lift
- function.embedding.has_coe_to_fun
- function.injective.can_lift
- pi.generalized_boolean_algebra
- set.pi_set_coe.can_lift'
- non_unital_ring_hom.has_coe_to_fun
- ring_hom.has_coe_to_fun
- mul_equiv.has_coe_to_fun
- add_equiv.has_coe_to_fun
- rel_hom.has_coe_to_fun
- rel_embedding.has_coe_to_fun
- rel_iso.has_coe_to_fun
- order_hom.has_coe_to_fun
- order_hom.monotone.can_lift
- finset.pi_finset_coe.can_lift'
- top_hom.has_coe_to_fun
- bot_hom.has_coe_to_fun
- bounded_order_hom.has_coe_to_fun
- sup_hom.has_coe_to_fun
- inf_hom.has_coe_to_fun
- sup_bot_hom.has_coe_to_fun
- inf_top_hom.has_coe_to_fun
- lattice_hom.has_coe_to_fun
- bounded_lattice_hom.has_coe_to_fun
- tactic.abel.normal_expr.has_coe_to_fun
- ring_equiv.has_coe_to_fun
- mul_action_hom.has_coe_to_fun
- distrib_mul_action_hom.has_coe_to_fun
- mul_semiring_action_hom.has_coe_to_fun
- function.has_smul
- function.has_vadd
- function.smul_comm_class
- function.vadd_comm_class
- function.module
- function.no_zero_smul_divisors
- linear_map.has_coe_to_fun
- linear_equiv.has_coe_to_fun
- pi_fin.has_repr
- pi_fin.reflect
- function.infinite_of_left
- function.infinite_of_right
- finsupp.has_coe_to_fun
- finsupp.can_lift
- absolute_value.has_coe_to_fun
- alg_hom.has_coe_to_fun
- alg_equiv.has_coe_to_fun
- non_unital_alg_hom.has_coe_to_fun
- omega_complete_partial_order.chain.has_coe_to_fun
- omega_complete_partial_order.continuous_hom.has_coe_to_fun
- monoid_algebra.has_coe_to_fun
- add_monoid_algebra.has_coe_to_fun
- tactic.ring.horner_expr.has_coe_to_fun
- function.algebra
- con.has_coe_to_fun
- add_con.has_coe_to_fun
- Sup_hom.has_coe_to_fun
- Inf_hom.has_coe_to_fun
- frame_hom.has_coe_to_fun
- complete_lattice_hom.has_coe_to_fun
- encodable.fin_arrow
- encodable.fintype_arrow_of_encodable
- linear_pmap.has_coe_to_fun
- valuation.has_coe_to_fun
- add_valuation.has_coe_to_fun
- is_noetherian_pi'
- ring_con.has_coe_to_fun
- module.free.function
- principal_seg.has_coe_to_fun
- finite_dimensional.finite_dimensional_pi
- multilinear_map.has_coe_to_fun
- alternating_map.fun_like
- alternating_map.has_coe_to_fun
- is_artinian_pi'
- pi.ordered_smul'
- pi.ordered_smul''
- function.compact_space
- function.locally_compact_space_of_finite
- function.locally_compact_space
- compact_exhaustion.has_coe_to_fun
- pi.order_closed_topology'
- homeomorph.has_coe_to_fun
- uniform_equiv.has_coe_to_fun
- continuous_map.has_coe_to_fun
- pi.has_continuous_mul'
- pi.has_continuous_add'
- pi.has_continuous_inv'
- pi.has_continuous_neg'
- pi.Sup_convergence_class'
- pi.Inf_convergence_class'
- pi.compact_Icc_space'
- cau_seq.has_coe_to_fun
- group_seminorm.has_coe_to_fun
- add_group_seminorm.has_coe_to_fun
- nonarch_add_group_seminorm.has_coe_to_fun
- group_norm.has_coe_to_fun
- add_group_norm.has_coe_to_fun
- nonarch_add_group_norm.has_coe_to_fun
- locally_bounded_map.has_coe_to_fun
- isometry_equiv.has_coe_to_fun
- normed_add_group_hom.has_coe_to_fun
- continuous_linear_map.to_fun
- continuous_linear_equiv.has_coe_to_fun
- linear_isometry.has_coe_to_fun
- linear_isometry_equiv.has_coe_to_fun
- non_unital_star_alg_hom.has_coe_to_fun
- star_alg_hom.has_coe_to_fun
- star_alg_equiv.has_coe_to_fun
- pi.cstar_ring'
- measure_theory.outer_measure.has_coe_to_fun
- measure_theory.measure.has_coe_to_fun
- measurable_equiv.has_coe_to_fun
- linear_map.general_linear_group.has_coe_to_fun
- measure_theory.simple_func.has_coe_to_fun
- cocompact_map.has_coe_to_fun
- stieltjes_function.has_coe_to_fun
- measure_theory.content.has_coe_to_fun
- affine_map.has_coe_to_fun
- affine_equiv.has_coe_to_fun
- module.dual.has_coe_to_fun
- bilin_form.has_coe_to_fun
- closure_operator.has_coe_to_fun
- lower_adjoint.has_coe_to_fun
- path.has_coe_to_fun
- affine_isometry.has_coe_to_fun
- affine_isometry_equiv.has_coe_to_fun
- local_equiv.has_coe_to_fun
- local_homeomorph.has_coe_to_fun
- seminorm.has_coe_to_fun
- continuous_multilinear_map.has_coe_to_fun
- continuous_linear_map.nonlinear_right_inverse.has_coe_to_fun
- composition_series.has_coe_to_fun
- matrix.unitary_group.coe_fun
- orthonormal_basis.has_coe_to_fun
- box_integral.box.has_mem
- box_integral.box_additive_map.has_coe_to_fun
- filter.germ.has_coe_t
- continuous_functions.set_of.has_coe_to_fun
- bounded_continuous_function.has_coe_to_fun
- measure_theory.ae_eq_fun.has_coe_to_fun
- measure_theory.Lp.has_coe_to_fun
- matrix.special_linear_group.has_coe_to_fun
- matrix.general_linear_group.has_coe_to_fun
- weak_dual.has_coe_to_fun
- normed_space.dual.has_coe_to_fun
- polynomial.gal.has_coe_to_fun
- hahn_series.summable_family.has_coe_to_fun
- cont_t.monad_run
- tactic.norm_fin.eval_fin_m.has_coe
- thunk.has_variable_names
- tactic.has_variable_names
- old_conv.has_monad_lift
- old_conv.has_coe
- measure_theory.vector_measure.has_coe_to_fun
- measure_theory.filtration.has_coe_to_fun
- polish_space.nat_fun
- probability_theory.kernel.has_coe_to_fun
- simplex_category.to_Top_obj.has_coe_to_fun
- measure_theory.finite_measure.has_coe_to_fun
- measure_theory.probability_measure.has_coe_to_fun
- continuous_affine_map.has_coe_to_fun
- shrinking_lemma.partial_refinement.has_coe_to_fun
- partition_of_unity.has_coe_to_fun
- bump_covering.has_coe_to_fun
- pfun.has_coe
- pretrivialization.has_coe_to_fun
- trivialization.has_coe_to_fun
- topological_space.opens.opens_hom_has_coe_to_fun
- locally_constant.has_coe_to_fun
- spectral_map.has_coe_to_fun
- dilation.has_coe_to_fun
- continuous_map.homotopy.has_coe_to_fun
- continuous_map.homotopy_with.has_coe_to_fun
- path.homotopy.has_coe_to_fun
- gen_loop.fun_like
- continuous_map.homotopy_equiv.has_coe_to_fun
- continuous_order_hom.has_coe_to_fun
- pseudo_epimorphism.has_coe_to_fun
- esakia_hom.has_coe_to_fun
- continuous_open_map.has_coe_to_fun
- UniformSpace.quiver.hom.has_coe_to_fun
- Compactum.quiver.hom.has_coe_to_fun
- topological_space.open_nhds.opens_nhds_hom_has_coe_to_fun
- continuous_monoid_hom.has_coe_to_fun
- continuous_add_monoid_hom.has_coe_to_fun
- derivation.has_coe_to_fun
- zero_at_infty_continuous_map.has_coe_to_fun
- flow.has_coe_to_fun
- circle_deg1_lift.has_coe_to_fun
- circle_deg1_lift.units_has_coe_to_fun
- pi.part.has_fix
- pi.lawful_fix
- schwartz_map.pi.has_coe
- schwartz_map.has_coe_to_fun
- cont_diff_bump.has_coe_to_fun
- hilbert_basis.has_coe_to_fun
- polynomial_module.has_coe_to_fun
- picard_lindelof.has_coe_to_fun
- picard_lindelof.fun_space.has_coe_to_fun
- enorm.has_coe_to_fun
- function.topological_ring
- function.algebra_ring
- ring_seminorm.has_coe_to_fun
- ring_norm.has_coe_to_fun
- mul_ring_seminorm.has_coe_to_fun
- mul_ring_norm.has_coe_to_fun
- model_with_corners.has_coe_to_fun
- char_p.pi
- char_p.pi'
- ring_invo.has_coe_to_fun
- lie_hom.has_coe_to_fun
- lie_equiv.has_coe_to_fun
- lie_module_hom.has_coe_to_fun
- lie_module_equiv.has_coe_to_fun
- nat.arithmetic_function.has_coe_to_fun
- heyting_hom.has_coe_to_fun
- coheyting_hom.has_coe_to_fun
- biheyting_hom.has_coe_to_fun
- mul_char.coe_to_fun
- add_char.has_coe_to_fun
- poly.fun_like
- poly.has_coe_to_fun
- modular_form.complex.slash_action
- modular_form.subgroup_action
- modular_form.SL_action
- slash_invariant_form.has_coe_to_fun
- number_field.infinite_place.has_coe_to_fun
- diffeomorph.has_coe_to_fun
- smooth_bump_function.has_coe_to_fun
- smooth_monoid_morphism.has_coe_to_fun
- smooth_add_monoid_morphism.has_coe_to_fun
- smooth_partition_of_unity.has_coe_to_fun
- left_invariant_derivation.has_coe_to_fun
- structure_groupoid.local_invariant_prop.sheaf_has_coe_to_fun
- order_monoid_hom.has_coe_to_fun
- order_add_monoid_hom.has_coe_to_fun
- order_monoid_with_zero_hom.has_coe_to_fun
- shelf_hom.has_coe_to_fun
- order_ring_hom.has_coe_to_fun
- order_ring_iso.has_coe_to_fun
- freiman_hom.has_coe_to_fun
- add_freiman_hom.has_coe_to_fun
- centroid_hom.has_coe_to_fun
- category_theory.Module.coextend_scalars.obj'.has_coe_to_fun
- category_theory.Module.coextend_scalars.obj.has_coe_to_fun
- quadratic_form.has_coe_to_fun
- quadratic_form.isometry.has_coe_to_fun
- primcodable.fin_arrow
- turing.pointed_map.has_coe_to_fun
- slim_check.total_function.pi.sampleable_ext
- combinatorics.line.has_coe_to_fun
- ssyt.fun_like
- ssyt.has_coe_to_fun
- function.well_founded_lt
- finsupp.pointwise_scalar
- finsupp.pointwise_module
- cfilter.has_coe_to_fun
- ctop.has_coe_to_fun
- first_order.language.hom.has_coe_to_fun
- first_order.language.embedding.has_coe_to_fun
- first_order.language.equiv.has_coe_to_fun
- first_order.language.elementary_embedding.has_coe_to_fun
- first_order.language.definable_set.pi.set_like
- algebraic_geometry.PresheafedSpace.quiver.hom.has_coe_to_fun
- counterexample.phillips_1940.bounded_additive_measure.has_coe_to_fun
- theorems_100.pi.measure_theory.measure_space
- slim_check.total_function.pi_pred.sampleable_ext
- slim_check.total_function.pi_uncurry.sampleable_ext