Lemmas about semiconjugate elements in a group_with_zero
. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
@[simp]
@[simp]
@[simp]
theorem
semiconj_by.inv_symm_left_iff₀
{G₀ : Type u_3}
[group_with_zero G₀]
{a x y : G₀} :
semiconj_by a⁻¹ x y ↔ semiconj_by a y x
theorem
semiconj_by.inv_symm_left₀
{G₀ : Type u_3}
[group_with_zero G₀]
{a x y : G₀}
(h : semiconj_by a x y) :
semiconj_by a⁻¹ y x
theorem
semiconj_by.inv_right₀
{G₀ : Type u_3}
[group_with_zero G₀]
{a x y : G₀}
(h : semiconj_by a x y) :
semiconj_by a x⁻¹ y⁻¹
@[simp]
theorem
semiconj_by.inv_right_iff₀
{G₀ : Type u_3}
[group_with_zero G₀]
{a x y : G₀} :
semiconj_by a x⁻¹ y⁻¹ ↔ semiconj_by a x y
theorem
semiconj_by.div_right
{G₀ : Type u_3}
[group_with_zero G₀]
{a x y x' y' : G₀}
(h : semiconj_by a x y)
(h' : semiconj_by a x' y') :
semiconj_by a (x / x') (y / y')