Category of types with a omega complete partial order #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file, we bundle the class omega_complete_partial_order
into a
concrete category and prove that continuous functions also form
a omega_complete_partial_order
.
Main definitions #
ωCPO
- an instance of
category
andconcrete_category
- an instance of
The category of types with a omega complete partial order.
@[protected, instance]
Equations
- ωCPO.omega_complete_partial_order.continuous_hom.category_theory.bundled_hom = {to_fun := omega_complete_partial_order.continuous_hom.simps.apply, id := omega_complete_partial_order.continuous_hom.id, comp := omega_complete_partial_order.continuous_hom.comp, hom_ext := omega_complete_partial_order.continuous_hom.coe_inj, id_to_fun := ωCPO.omega_complete_partial_order.continuous_hom.category_theory.bundled_hom._proof_1, comp_to_fun := ωCPO.omega_complete_partial_order.continuous_hom.category_theory.bundled_hom._proof_2}
@[protected, instance]
Construct a bundled ωCPO from the underlying type and typeclass.
Equations
@[simp]
@[protected, instance]
Equations
@[protected, instance]
Equations
The pi-type gives a cone for a product.
Equations
- ωCPO.has_products.product f = category_theory.limits.fan.mk (ωCPO.of (Π (j : J), ↥(f j))) (λ (j : J), omega_complete_partial_order.continuous_hom.of_mono (pi.eval_order_hom j) _)
The pi-type is a limit cone for the product.
@[protected, instance]
@[protected, instance]
def
ωCPO.omega_complete_partial_order_equalizer
{α : Type u_1}
{β : Type u_2}
[omega_complete_partial_order α]
[omega_complete_partial_order β]
(f g : α →𝒄 β) :
omega_complete_partial_order {a // ⇑f a = ⇑g a}
Equations
- ωCPO.omega_complete_partial_order_equalizer f g = omega_complete_partial_order.subtype (λ (a : α), ⇑f a = ⇑g a) _
def
ωCPO.has_equalizers.equalizer_ι
{α : Type u_1}
{β : Type u_2}
[omega_complete_partial_order α]
[omega_complete_partial_order β]
(f g : α →𝒄 β) :
The equalizer inclusion function as a continuous_hom
.
Equations
- ωCPO.has_equalizers.equalizer_ι f g = omega_complete_partial_order.continuous_hom.of_mono (order_hom.subtype.val (λ (a : α), ⇑f a = ⇑g a)) _
A construction of the equalizer fork.
Equations
The equalizer fork is a limit.
Equations
- ωCPO.has_equalizers.is_equalizer f g = category_theory.limits.fork.is_limit.mk' (ωCPO.has_equalizers.equalizer f g) (λ (s : category_theory.limits.fork f g), ⟨{to_order_hom := {to_fun := λ (x : ↥(((category_theory.functor.const category_theory.limits.walking_parallel_pair).obj s.X).obj category_theory.limits.walking_parallel_pair.zero)), ⟨⇑(s.ι) x, _⟩, monotone' := _}, cont := _}, _⟩)
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]