Theory of complete separated uniform spaces. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file is for elementary lemmas that depend on both Cauchy filters and separation.
    
theorem
is_complete.is_closed
    {α : Type u_1}
    [uniform_space α]
    [separated_space α]
    {s : set α}
    (h : is_complete s) :
    
theorem
dense_inducing.continuous_extend_of_cauchy
    {α : Type u_1}
    [topological_space α]
    {β : Type u_2}
    [topological_space β]
    {γ : Type u_3}
    [uniform_space γ]
    [complete_space γ]
    [separated_space γ]
    {e : α → β}
    {f : α → γ}
    (de : dense_inducing e)
    (h : ∀ (b : β), cauchy (filter.map f (filter.comap e (nhds b)))) :
continuous (de.extend f)