mathlib3 documentation

topology.algebra.order.group

Topology on a linear ordered additive commutative group #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

In this file we prove that a linear ordered additive commutative group with order topology is a topological group. We also prove continuity of abs : G → G and provide convenience lemmas like continuous_at.abs.

@[protected]
theorem filter.tendsto.abs {α : Type u_1} {G : Type u_2} [topological_space G] [linear_ordered_add_comm_group G] [order_topology G] {l : filter α} {f : α G} {a : G} (h : filter.tendsto f l (nhds a)) :
filter.tendsto (λ (x : α), |f x|) l (nhds |a|)
@[protected]
theorem continuous.abs {α : Type u_1} {G : Type u_2} [topological_space G] [linear_ordered_add_comm_group G] [order_topology G] {f : α G} [topological_space α] (h : continuous f) :
continuous (λ (x : α), |f x|)
@[protected]
theorem continuous_at.abs {α : Type u_1} {G : Type u_2} [topological_space G] [linear_ordered_add_comm_group G] [order_topology G] {f : α G} [topological_space α] {a : α} (h : continuous_at f a) :
continuous_at (λ (x : α), |f x|) a
@[protected]
theorem continuous_within_at.abs {α : Type u_1} {G : Type u_2} [topological_space G] [linear_ordered_add_comm_group G] [order_topology G] {f : α G} [topological_space α] {a : α} {s : set α} (h : continuous_within_at f s a) :
continuous_within_at (λ (x : α), |f x|) s a
@[protected]
theorem continuous_on.abs {α : Type u_1} {G : Type u_2} [topological_space G] [linear_ordered_add_comm_group G] [order_topology G] {f : α G} [topological_space α] {s : set α} (h : continuous_on f s) :
continuous_on (λ (x : α), |f x|) s