Successors and predecessors of fin n
#
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file, we show that fin n
is both a succ_order
and a pred_order
. Note that they are
also archimedean, but this is derived from the general instance for well-orderings as opposed
to a specific fin
instance.
@[protected, instance]
Equations
- fin.succ_order = succ_order.of_core (λ (i : fin (n + 1)), ite (i < fin.last n) (i + 1) i) _ _
- fin.succ_order = {succ := fin.elim0 (λ (ᾰ : fin 0), fin 0), le_succ := fin.succ_order._main._proof_1, max_of_succ_le := fin.succ_order._main._proof_2, succ_le_of_lt := fin.succ_order._main._proof_3, le_of_lt_succ := fin.succ_order._main._proof_4}
@[protected, instance]
Equations
- fin.pred_order = pred_order.of_core (λ (x : fin (n + 1)), ite (x = 0) 0 (x - 1)) _ _
- fin.pred_order = {pred := fin.elim0 (λ (ᾰ : fin 0), fin 0), pred_le := fin.pred_order._main._proof_1, min_of_le_pred := fin.pred_order._main._proof_2, le_pred_of_lt := fin.pred_order._main._proof_3, le_of_pred_lt := fin.pred_order._main._proof_4}
@[simp]
@[simp]