mathlib documentation

data.set.finite

Finite sets #

This file defines predicates for finite and infinite sets and provides fintype instances for many set constructions. It also proves basic facts about finite sets and gives ways to manipulate set.finite expressions.

Main definitions #

Implementation #

A finite set is defined to be a set whose coercion to a type has a fintype instance. Since set.finite is Prop-valued, this is the mere fact that the fintype instance exists.

There are two components to finiteness constructions. The first is fintype instances for each construction. This gives a way to actually compute a finset that represents the set, and these may be accessed using set.to_finset. This gets the finset in the correct form, since otherwise finset.univ : finset s is a finset for the subtype for s. The second component is "constructors" for set.finite that give proofs that fintype instances exist classically given other set.finite proofs. Unlike the fintype instances, these do not use any decidability instances since they do not compute anything.

Tags #

finite sets

@[protected]
inductive set.finite {α : Type u} (s : set α) :
Prop

A set is finite if there is a finset with the same elements. This is represented as there being a fintype instance for the set coerced to a type.

Note: this is a custom inductive type rather than nonempty (fintype s) so that it won't be frozen as a local instance.

theorem set.finite_of_fintype {α : Type u} (s : set α) [h : fintype s] :

Constructor for set.finite with the fintype as an instance argument.

theorem set.finite_def {α : Type u} {s : set α} :
noncomputable def set.finite.fintype {α : Type u} {s : set α} (h : s.finite) :

A finite set coerced to a type is a fintype. This is the fintype projection for a set.finite.

Note that because finite isn't a typeclass, this definition will not fire if it is made into an instance

Equations
noncomputable def set.finite.to_finset {α : Type u} {s : set α} (h : s.finite) :

Using choice, get the finset that represents this set.

Equations
theorem set.finite.exists_finset {α : Type u} {s : set α} (h : s.finite) :
∃ (s' : finset α), ∀ (a : α), a s' a s
theorem set.finite.exists_finset_coe {α : Type u} {s : set α} (h : s.finite) :
∃ (s' : finset α), s' = s
@[protected, instance]
def set.finset.can_lift {α : Type u} :
can_lift (set α) (finset α)

Finite sets can be lifted to finsets.

Equations
@[protected]
def set.infinite {α : Type u} (s : set α) :
Prop

A set is infinite if it is not finite.

This is protected so that it does not conflict with global infinite.

Equations
@[simp]
theorem set.not_infinite {α : Type u} {s : set α} :
theorem set.finite_or_infinite {α : Type u} {s : set α} :

See also fintype_or_infinite.

Basic properties of set.finite.to_finset #

@[simp]
theorem set.finite.coe_to_finset {α : Type u} {s : set α} (h : s.finite) :
@[simp]
theorem set.finite.mem_to_finset {α : Type u} {s : set α} (h : s.finite) {a : α} :
@[simp]
theorem set.finite.nonempty_to_finset {α : Type u} {s : set α} (h : s.finite) :
@[simp]
theorem set.finite.coe_sort_to_finset {α : Type u} {s : set α} (h : s.finite) :
@[simp]
theorem set.finite_empty_to_finset {α : Type u} (h : .finite) :
@[simp]
theorem set.finite.to_finset_inj {α : Type u} {s t : set α} {hs : s.finite} {ht : t.finite} :
theorem set.subset_to_finset_iff {α : Type u} {s : finset α} {t : set α} (ht : t.finite) :
@[simp]
theorem set.finite_to_finset_eq_empty_iff {α : Type u} {s : set α} {h : s.finite} :
@[simp]
theorem set.finite.to_finset_mono {α : Type u} {s t : set α} {hs : s.finite} {ht : t.finite} :
@[simp]
theorem set.finite.to_finset_strict_mono {α : Type u} {s t : set α} {hs : s.finite} {ht : t.finite} :

Fintype instances #

Every instance here should have a corresponding set.finite constructor in the next section.

@[protected, instance]
def set.fintype_univ {α : Type u} [fintype α] :
Equations
noncomputable def set.fintype_of_finite_univ {α : Type u} (H : set.univ.finite) :

If (set.univ : set α) is finite then α is a finite type.

Equations
@[protected, instance]
def set.fintype_union {α : Type u} [decidable_eq α] (s t : set α) [fintype s] [fintype t] :
Equations
@[protected, instance]
def set.fintype_sep {α : Type u} (s : set α) (p : α → Prop) [fintype s] [decidable_pred p] :
fintype {a ∈ s | p a}
Equations
@[protected, instance]
def set.fintype_inter {α : Type u} (s t : set α) [decidable_eq α] [fintype s] [fintype t] :
Equations
@[protected, instance]
def set.fintype_inter_of_left {α : Type u} (s t : set α) [fintype s] [decidable_pred (λ (_x : α), _x t)] :

A fintype instance for set intersection where the left set has a fintype instance.

Equations
@[protected, instance]
def set.fintype_inter_of_right {α : Type u} (s t : set α) [fintype t] [decidable_pred (λ (_x : α), _x s)] :

A fintype instance for set intersection where the right set has a fintype instance.

Equations
def set.fintype_subset {α : Type u} (s : set α) {t : set α} [fintype s] [decidable_pred (λ (_x : α), _x t)] (h : t s) :

A fintype structure on a set defines a fintype structure on its subset.

Equations
@[protected, instance]
def set.fintype_diff {α : Type u} [decidable_eq α] (s t : set α) [fintype s] [fintype t] :
Equations
@[protected, instance]
def set.fintype_diff_left {α : Type u} (s t : set α) [fintype s] [decidable_pred (λ (_x : α), _x t)] :
Equations
@[protected, instance]
def set.fintype_Union {α : Type u} {ι : Sort w} [decidable_eq α] [fintype (plift ι)] (f : ι → set α) [Π (i : ι), fintype (f i)] :
fintype (⋃ (i : ι), f i)
Equations
@[protected, instance]
def set.fintype_sUnion {α : Type u} [decidable_eq α] {s : set (set α)} [fintype s] [H : Π (t : s), fintype t] :
Equations
def set.fintype_bUnion {α : Type u} [decidable_eq α] {ι : Type u_1} (s : set ι) [fintype s] (t : ι → set α) (H : Π (i : ι), i sfintype (t i)) :
fintype (⋃ (x : ι) (H : x s), t x)

A union of sets with fintype structure over a set with fintype structure has a fintype structure.

Equations
@[protected, instance]
def set.fintype_bUnion' {α : Type u} [decidable_eq α] {ι : Type u_1} (s : set ι) [fintype s] (t : ι → set α) [Π (i : ι), fintype (t i)] :
fintype (⋃ (x : ι) (H : x s), t x)
Equations
def set.fintype_bind {α β : Type u_1} [decidable_eq β] (s : set α) [fintype s] (f : α → set β) (H : Π (a : α), a sfintype (f a)) :

If s : set α is a set with fintype instance and f : α → set β is a function such that each f a, a ∈ s, has a fintype structure, then s >>= f has a fintype structure.

Equations
@[protected, instance]
def set.fintype_bind' {α β : Type u_1} [decidable_eq β] (s : set α) [fintype s] (f : α → set β) [H : Π (a : α), fintype (f a)] :
Equations
@[protected, instance]
def set.fintype_empty {α : Type u} :
Equations
@[protected, instance]
def set.fintype_singleton {α : Type u} (a : α) :
Equations
@[protected, instance]
def set.fintype_pure {α : Type u} (a : α) :
Equations
@[protected, instance]
def set.fintype_insert {α : Type u} (a : α) (s : set α) [decidable_eq α] [fintype s] :

A fintype instance for inserting an element into a set using the corresponding insert function on finset. This requires decidable_eq α. There is also set.fintype_insert' when a ∈ s is decidable.

Equations
def set.fintype_insert_of_not_mem {α : Type u} {a : α} (s : set α) [fintype s] (h : a s) :

A fintype structure on insert a s when inserting a new element.

Equations
def set.fintype_insert_of_mem {α : Type u} {a : α} (s : set α) [fintype s] (h : a s) :

A fintype structure on insert a s when inserting a pre-existing element.

Equations
@[protected, instance]
def set.fintype_insert' {α : Type u} (a : α) (s : set α) [decidable (a s)] [fintype s] :

The set.fintype_insert instance requires decidable equality, but when a ∈ s is decidable for this particular a we can still get a fintype instance by using set.fintype_insert_of_not_mem or set.fintype_insert_of_mem.

This instance pre-dates set.fintype_insert, and it is less efficient. When decidable_mem_of_fintype is made a local instance, then this instance would override set.fintype_insert if not for the fact that its priority has been adjusted. See Note [lower instance priority].

Equations
@[protected, instance]
def set.fintype_image {α : Type u} {β : Type v} [decidable_eq β] (s : set α) (f : α → β) [fintype s] :
Equations
def set.fintype_of_fintype_image {α : Type u} {β : Type v} (s : set α) {f : α → β} {g : β → option α} (I : function.is_partial_inv f g) [fintype (f '' s)] :

If a function f has a partial inverse and sends a set s to a set with [fintype] instance, then s has a fintype structure as well.

Equations
@[protected, instance]
def set.fintype_range {α : Type u} {ι : Sort w} [decidable_eq α] (f : ι → α) [fintype (plift ι)] :
Equations
@[protected, instance]
def set.fintype_map {α β : Type u_1} [decidable_eq β] (s : set α) (f : α → β) [fintype s] :
Equations
@[protected, instance]
def set.fintype_lt_nat (n : ) :
fintype {i : | i < n}
Equations
@[protected, instance]
def set.fintype_le_nat (n : ) :
fintype {i : | i n}
Equations

This is not an instance so that it does not conflict with the one in src/order/locally_finite.

Equations
@[protected, instance]
def set.fintype_prod {α : Type u} {β : Type v} (s : set α) (t : set β) [fintype s] [fintype t] :
Equations
@[protected, instance]
def set.fintype_image2 {α : Type u} {β : Type v} {γ : Type x} [decidable_eq γ] (f : α → β → γ) (s : set α) (t : set β) [hs : fintype s] [ht : fintype t] :

image2 f s t is fintype if s and t are.

Equations
@[protected, instance]
def set.fintype_seq {α : Type u} {β : Type v} [decidable_eq β] (f : set (α → β)) (s : set α) [fintype f] [fintype s] :
Equations
@[protected, instance]
def set.fintype_seq' {α β : Type u} [decidable_eq β] (f : set (α → β)) (s : set α) [fintype f] [fintype s] :
Equations
@[protected, instance]
def set.fintype_mem_finset {α : Type u} (s : finset α) :
fintype {a : α | a s}
Equations

Constructors for set.finite #

Every constructor here should have a corresponding fintype instance in the previous section (or in the fintype module).

The implementation of these constructors ideally should be no more than set.finite_of_fintype, after possibly setting up some fintype and classical decidable instances.

theorem set.finite.of_fintype {α : Type u} [fintype α] (s : set α) :
theorem set.finite.of_subsingleton {α : Type u} [subsingleton α] (s : set α) :
theorem set.finite_univ {α : Type u} [fintype α] :
theorem set.finite.union {α : Type u} {s t : set α} (hs : s.finite) (ht : t.finite) :
(s t).finite
theorem set.finite.sup {α : Type u} {s t : set α} :
s.finitet.finite(s t).finite
theorem set.finite.sep {α : Type u} {s : set α} (hs : s.finite) (p : α → Prop) :
{a ∈ s | p a}.finite
theorem set.finite.inter_of_left {α : Type u} {s : set α} (hs : s.finite) (t : set α) :
(s t).finite
theorem set.finite.inter_of_right {α : Type u} {s : set α} (hs : s.finite) (t : set α) :
(t s).finite
theorem set.finite.inf_of_left {α : Type u} {s : set α} (h : s.finite) (t : set α) :
(s t).finite
theorem set.finite.inf_of_right {α : Type u} {s : set α} (h : s.finite) (t : set α) :
(t s).finite
theorem set.finite.subset {α : Type u} {s : set α} (hs : s.finite) {t : set α} (ht : t s) :
theorem set.finite.diff {α : Type u} {s : set α} (hs : s.finite) (t : set α) :
(s \ t).finite
theorem set.finite.of_diff {α : Type u} {s t : set α} (hd : (s \ t).finite) (ht : t.finite) :
theorem set.finite_Union {α : Type u} {ι : Sort w} [fintype (plift ι)] {f : ι → set α} (H : ∀ (i : ι), (f i).finite) :
(⋃ (i : ι), f i).finite
theorem set.finite.sUnion {α : Type u} {s : set (set α)} (hs : s.finite) (H : ∀ (t : set α), t s → t.finite) :
theorem set.finite.bUnion {α : Type u} {ι : Type u_1} {s : set ι} (hs : s.finite) {t : ι → set α} (ht : ∀ (i : ι), i s(t i).finite) :
(⋃ (i : ι) (H : i s), t i).finite
theorem set.finite.bUnion' {α : Type u} {ι : Type u_1} {s : set ι} (hs : s.finite) {t : Π (i : ι), i sset α} (ht : ∀ (i : ι) (H : i s), (t i H).finite) :
(⋃ (i : ι) (H : i s), t i H).finite

Dependent version of finite.bUnion.

theorem set.finite.sInter {α : Type u_1} {s : set (set α)} {t : set α} (ht : t s) (hf : t.finite) :
theorem set.finite.bind {α β : Type u_1} {s : set α} {f : α → set β} (h : s.finite) (hf : ∀ (a : α), a s(f a).finite) :
(s >>= f).finite
@[simp]
theorem set.finite_empty {α : Type u} :
@[simp]
theorem set.finite_singleton {α : Type u} (a : α) :
{a}.finite
theorem set.finite_pure {α : Type u} (a : α) :
@[simp]
theorem set.finite.insert {α : Type u} (a : α) {s : set α} (hs : s.finite) :
theorem set.finite.image {α : Type u} {β : Type v} {s : set α} (f : α → β) (hs : s.finite) :
(f '' s).finite
theorem set.finite_range {α : Type u} {ι : Sort w} (f : ι → α) [fintype (plift ι)] :
theorem set.finite.dependent_image {α : Type u} {β : Type v} {s : set α} (hs : s.finite) (F : Π (i : α), i s → β) :
{y : β | ∃ (x : α) (hx : x s), y = F x hx}.finite
theorem set.finite.map {α β : Type u_1} {s : set α} (f : α → β) :
s.finiteset.finite (f <$> s)
theorem set.finite.of_finite_image {α : Type u} {β : Type v} {s : set α} {f : α → β} (h : (f '' s).finite) (hi : set.inj_on f s) :
theorem set.finite.of_preimage {α : Type u} {β : Type v} {f : α → β} {s : set β} (h : (f ⁻¹' s).finite) (hf : function.surjective f) :
theorem set.finite.preimage {α : Type u} {β : Type v} {s : set β} {f : α → β} (I : set.inj_on f (f ⁻¹' s)) (h : s.finite) :
theorem set.finite.preimage_embedding {α : Type u} {β : Type v} {s : set β} (f : α β) (h : s.finite) :
theorem set.finite_lt_nat (n : ) :
{i : | i < n}.finite
theorem set.finite_le_nat (n : ) :
{i : | i n}.finite
theorem set.finite.prod {α : Type u} {β : Type v} {s : set α} {t : set β} (hs : s.finite) (ht : t.finite) :
(s ×ˢ t).finite
theorem set.finite.image2 {α : Type u} {β : Type v} {γ : Type x} (f : α → β → γ) {s : set α} {t : set β} (hs : s.finite) (ht : t.finite) :
theorem set.finite.seq {α : Type u} {β : Type v} {f : set (α → β)} {s : set α} (hf : f.finite) (hs : s.finite) :
(f.seq s).finite
theorem set.finite.seq' {α β : Type u} {f : set (α → β)} {s : set α} (hf : f.finite) (hs : s.finite) :
(f <*> s).finite
theorem set.finite_mem_finset {α : Type u} (s : finset α) :
{a : α | a s}.finite
theorem set.subsingleton.finite {α : Type u} {s : set α} (h : s.subsingleton) :
theorem set.exists_finite_iff_finset {α : Type u} {p : set α → Prop} :
(∃ (s : set α), s.finite p s) ∃ (s : finset α), p s
theorem set.finite.finite_subsets {α : Type u} {a : set α} (h : a.finite) :
{b : set α | b a}.finite

There are finitely many subsets of a given finite set

theorem set.finite.pi {δ : Type u_1} [fintype δ] {κ : δ → Type u_2} {t : Π (d : δ), set (κ d)} (ht : ∀ (d : δ), (t d).finite) :

Finite product of finite sets is finite

theorem set.union_finset_finite_of_range_finite {α : Type u} {β : Type v} (f : α → finset β) (h : (set.range f).finite) :
(⋃ (a : α), (f a)).finite

A finite union of finsets is finite.

theorem set.finite_range_ite {α : Type u} {β : Type v} {p : α → Prop} [decidable_pred p] {f g : α → β} (hf : (set.range f).finite) (hg : (set.range g).finite) :
(set.range (λ (x : α), ite (p x) (f x) (g x))).finite
theorem set.finite_range_const {α : Type u} {β : Type v} {c : β} :
(set.range (λ (x : α), c)).finite

Properties #

@[protected, instance]
def set.finite.inhabited {α : Type u} :
inhabited {s // s.finite}
Equations
@[simp]
theorem set.finite_union {α : Type u} {s t : set α} :
theorem set.finite_image_iff {α : Type u} {β : Type v} {s : set α} {f : α → β} (hi : set.inj_on f s) :
@[simp]
theorem set.finite.to_finset_singleton {α : Type u} {a : α} (ha : {a}.finite := _) :
@[simp]
theorem set.finite.to_finset_insert {α : Type u} [decidable_eq α] {s : set α} {a : α} (hs : (has_insert.insert a s).finite) :
theorem set.finite.to_finset_insert' {α : Type u} [decidable_eq α] {a : α} {s : set α} (hs : s.finite) :
theorem set.finite.fin_embedding {α : Type u} {s : set α} (h : s.finite) :
∃ (n : ) (f : fin n α), set.range f = s
theorem set.finite.fin_param {α : Type u} {s : set α} (h : s.finite) :
∃ (n : ) (f : fin n → α), function.injective f set.range f = s
theorem set.finite_option {α : Type u} {s : set (option α)} :
s.finite {x : α | option.some x s}.finite
theorem set.finite_image_fst_and_snd_iff {α : Type u} {β : Type v} {s : set × β)} :
theorem set.forall_finite_image_eval_iff {δ : Type u_1} [fintype δ] {κ : δ → Type u_2} {s : set (Π (d : δ), κ d)} :
(∀ (d : δ), (function.eval d '' s).finite) s.finite
theorem set.finite_subset_Union {α : Type u} {s : set α} (hs : s.finite) {ι : Type u_1} {t : ι → set α} (h : s ⋃ (i : ι), t i) :
∃ (I : set ι), I.finite s ⋃ (i : ι) (H : i I), t i
theorem set.eq_finite_Union_of_finite_subset_Union {α : Type u} {ι : Type u_1} {s : ι → set α} {t : set α} (tfin : t.finite) (h : t ⋃ (i : ι), s i) :
∃ (I : set ι), I.finite ∃ (σ : {i : ι | i I}set α), (∀ (i : {i : ι | i I}), (σ i).finite) (∀ (i : {i : ι | i I}), σ i s i) t = ⋃ (i : {i : ι | i I}), σ i
theorem set.finite.induction_on {α : Type u} {C : set α → Prop} {s : set α} (h : s.finite) (H0 : C ) (H1 : ∀ {a : α} {s : set α}, a ss.finiteC sC (has_insert.insert a s)) :
C s
theorem set.finite.dinduction_on {α : Type u} {C : Π (s : set α), s.finite → Prop} {s : set α} (h : s.finite) (H0 : C set.finite_empty) (H1 : ∀ {a : α} {s : set α}, a s∀ (h : s.finite), C s hC (has_insert.insert a s) _) :
C s h
theorem set.seq_of_forall_finite_exists {γ : Type u_1} {P : γ → set γ → Prop} (h : ∀ (t : set γ), t.finite(∃ (c : γ), P c t)) :
∃ (u : → γ), ∀ (n : ), P (u n) (u '' set.Iio n)

If P is some relation between terms of γ and sets in γ, such that every finite set t : set γ has some c : γ related to it, then there is a recursively defined sequence u in γ so u n is related to the image of {0, 1, ..., n-1} under u.

(We use this later to show sequentially compact sets are totally bounded.)

Cardinality #

theorem set.empty_card {α : Type u} :
@[simp]
theorem set.empty_card' {α : Type u} {h : fintype } :
theorem set.card_fintype_insert_of_not_mem {α : Type u} {a : α} (s : set α) [fintype s] (h : a s) :
@[simp]
theorem set.card_insert {α : Type u} {a : α} (s : set α) [fintype s] (h : a s) {d : fintype (has_insert.insert a s)} :
theorem set.card_image_of_inj_on {α : Type u} {β : Type v} {s : set α} [fintype s] {f : α → β} [fintype (f '' s)] (H : ∀ (x : α), x s∀ (y : α), y sf x = f yx = y) :
theorem set.card_image_of_injective {α : Type u} {β : Type v} (s : set α) [fintype s] {f : α → β} [fintype (f '' s)] (H : function.injective f) :
@[simp]
theorem set.card_singleton {α : Type u} (a : α) :
theorem set.card_lt_card {α : Type u} {s t : set α} [fintype s] [fintype t] (h : s t) :
theorem set.card_le_of_subset {α : Type u} {s t : set α} [fintype s] [fintype t] (hsub : s t) :
theorem set.eq_of_subset_of_card_le {α : Type u} {s t : set α} [fintype s] [fintype t] (hsub : s t) (hcard : fintype.card t fintype.card s) :
s = t
theorem set.card_range_of_injective {α : Type u} {β : Type v} [fintype α] {f : α → β} (hf : function.injective f) [fintype (set.range f)] :
theorem set.finite.card_to_finset {α : Type u} {s : set α} [fintype s] (h : s.finite) :
theorem set.card_ne_eq {α : Type u} [fintype α] (a : α) [fintype {x : α | x a}] :
fintype.card {x : α | x a} = fintype.card α - 1

Infinite sets #

theorem set.infinite_univ {α : Type u} [h : infinite α] :
theorem set.infinite_coe_iff {α : Type u} {s : set α} :
theorem set.infinite.to_subtype {α : Type u} {s : set α} (h : s.infinite) :
noncomputable def set.infinite.nat_embedding {α : Type u} (s : set α) (h : s.infinite) :

Embedding of into an infinite set.

Equations
theorem set.infinite.exists_subset_card_eq {α : Type u} {s : set α} (hs : s.infinite) (n : ) :
∃ (t : finset α), t s t.card = n
theorem set.infinite.nonempty {α : Type u} {s : set α} (h : s.infinite) :
theorem set.infinite_of_finite_compl {α : Type u} [infinite α] {s : set α} (hs : s.finite) :
theorem set.finite.infinite_compl {α : Type u} [infinite α] {s : set α} (hs : s.finite) :
@[protected]
theorem set.infinite.mono {α : Type u} {s t : set α} (h : s t) :
theorem set.infinite.diff {α : Type u} {s t : set α} (hs : s.infinite) (ht : t.finite) :
(s \ t).infinite
@[simp]
theorem set.infinite_union {α : Type u} {s t : set α} :
theorem set.infinite_of_infinite_image {α : Type u} {β : Type v} (f : α → β) {s : set α} (hs : (f '' s).infinite) :
theorem set.infinite_image_iff {α : Type u} {β : Type v} {s : set α} {f : α → β} (hi : set.inj_on f s) :
theorem set.infinite_of_inj_on_maps_to {α : Type u} {β : Type v} {s : set α} {t : set β} {f : α → β} (hi : set.inj_on f s) (hm : set.maps_to f s t) (hs : s.infinite) :
theorem set.infinite.exists_ne_map_eq_of_maps_to {α : Type u} {β : Type v} {s : set α} {t : set β} {f : α → β} (hs : s.infinite) (hf : set.maps_to f s t) (ht : t.finite) :
∃ (x : α) (H : x s) (y : α) (H : y s), x y f x = f y
theorem set.infinite_range_of_injective {α : Type u} {β : Type v} [infinite α] {f : α → β} (hi : function.injective f) :
theorem set.infinite_of_injective_forall_mem {α : Type u} {β : Type v} [infinite α] {s : set β} {f : α → β} (hi : function.injective f) (hf : ∀ (x : α), f x s) :
theorem set.infinite.exists_nat_lt {s : set } (hs : s.infinite) (n : ) :
∃ (m : ) (H : m s), n < m
theorem set.infinite.exists_not_mem_finset {α : Type u} {s : set α} (hs : s.infinite) (f : finset α) :
∃ (a : α) (H : a s), a f

Order properties #

theorem set.finite_is_top (α : Type u_1) [partial_order α] :
{x : α | is_top x}.finite
theorem set.finite_is_bot (α : Type u_1) [partial_order α] :
{x : α | is_bot x}.finite
theorem set.infinite.exists_lt_map_eq_of_maps_to {α : Type u} {β : Type v} [linear_order α] {s : set α} {t : set β} {f : α → β} (hs : s.infinite) (hf : set.maps_to f s t) (ht : t.finite) :
∃ (x : α) (H : x s) (y : α) (H : y s), x < y f x = f y
theorem set.finite.exists_lt_map_eq_of_range_subset {α : Type u} {β : Type v} [linear_order α] [infinite α] {t : set β} {f : α → β} (hf : set.range f t) (ht : t.finite) :
∃ (a b : α), a < b f a = f b
theorem set.exists_min_image {α : Type u} {β : Type v} [linear_order β] (s : set α) (f : α → β) (h1 : s.finite) :
s.nonempty(∃ (a : α) (H : a s), ∀ (b : α), b sf a f b)
theorem set.exists_max_image {α : Type u} {β : Type v} [linear_order β] (s : set α) (f : α → β) (h1 : s.finite) :
s.nonempty(∃ (a : α) (H : a s), ∀ (b : α), b sf b f a)
theorem set.exists_lower_bound_image {α : Type u} {β : Type v} [hα : nonempty α] [linear_order β] (s : set α) (f : α → β) (h : s.finite) :
∃ (a : α), ∀ (b : α), b sf a f b
theorem set.exists_upper_bound_image {α : Type u} {β : Type v} [hα : nonempty α] [linear_order β] (s : set α) (f : α → β) (h : s.finite) :
∃ (a : α), ∀ (b : α), b sf b f a
theorem set.finite.supr_binfi_of_monotone {ι : Type u_1} {ι' : Type u_2} {α : Type u_3} [preorder ι'] [nonempty ι'] [is_directed ι' has_le.le] [order.frame α] {s : set ι} (hs : s.finite) {f : ι → ι' → α} (hf : ∀ (i : ι), i smonotone (f i)) :
(⨆ (j : ι'), ⨅ (i : ι) (H : i s), f i j) = ⨅ (i : ι) (H : i s), ⨆ (j : ι'), f i j
theorem set.finite.supr_binfi_of_antitone {ι : Type u_1} {ι' : Type u_2} {α : Type u_3} [preorder ι'] [nonempty ι'] [is_directed ι' (function.swap has_le.le)] [order.frame α] {s : set ι} (hs : s.finite) {f : ι → ι' → α} (hf : ∀ (i : ι), i santitone (f i)) :
(⨆ (j : ι'), ⨅ (i : ι) (H : i s), f i j) = ⨅ (i : ι) (H : i s), ⨆ (j : ι'), f i j
theorem set.finite.infi_bsupr_of_monotone {ι : Type u_1} {ι' : Type u_2} {α : Type u_3} [preorder ι'] [nonempty ι'] [is_directed ι' (function.swap has_le.le)] [order.coframe α] {s : set ι} (hs : s.finite) {f : ι → ι' → α} (hf : ∀ (i : ι), i smonotone (f i)) :
(⨅ (j : ι'), ⨆ (i : ι) (H : i s), f i j) = ⨆ (i : ι) (H : i s), ⨅ (j : ι'), f i j
theorem set.finite.infi_bsupr_of_antitone {ι : Type u_1} {ι' : Type u_2} {α : Type u_3} [preorder ι'] [nonempty ι'] [is_directed ι' has_le.le] [order.coframe α] {s : set ι} (hs : s.finite) {f : ι → ι' → α} (hf : ∀ (i : ι), i santitone (f i)) :
(⨅ (j : ι'), ⨆ (i : ι) (H : i s), f i j) = ⨆ (i : ι) (H : i s), ⨅ (j : ι'), f i j
theorem supr_infi_of_monotone {ι : Type u_1} {ι' : Type u_2} {α : Type u_3} [fintype ι] [preorder ι'] [nonempty ι'] [is_directed ι' has_le.le] [order.frame α] {f : ι → ι' → α} (hf : ∀ (i : ι), monotone (f i)) :
(⨆ (j : ι'), ⨅ (i : ι), f i j) = ⨅ (i : ι), ⨆ (j : ι'), f i j
theorem supr_infi_of_antitone {ι : Type u_1} {ι' : Type u_2} {α : Type u_3} [fintype ι] [preorder ι'] [nonempty ι'] [is_directed ι' (function.swap has_le.le)] [order.frame α] {f : ι → ι' → α} (hf : ∀ (i : ι), antitone (f i)) :
(⨆ (j : ι'), ⨅ (i : ι), f i j) = ⨅ (i : ι), ⨆ (j : ι'), f i j
theorem infi_supr_of_monotone {ι : Type u_1} {ι' : Type u_2} {α : Type u_3} [fintype ι] [preorder ι'] [nonempty ι'] [is_directed ι' (function.swap has_le.le)] [order.coframe α] {f : ι → ι' → α} (hf : ∀ (i : ι), monotone (f i)) :
(⨅ (j : ι'), ⨆ (i : ι), f i j) = ⨆ (i : ι), ⨅ (j : ι'), f i j
theorem infi_supr_of_antitone {ι : Type u_1} {ι' : Type u_2} {α : Type u_3} [fintype ι] [preorder ι'] [nonempty ι'] [is_directed ι' has_le.le] [order.coframe α] {f : ι → ι' → α} (hf : ∀ (i : ι), antitone (f i)) :
(⨅ (j : ι'), ⨆ (i : ι), f i j) = ⨆ (i : ι), ⨅ (j : ι'), f i j
theorem set.Union_Inter_of_monotone {ι : Type u_1} {ι' : Type u_2} {α : Type u_3} [fintype ι] [preorder ι'] [is_directed ι' has_le.le] [nonempty ι'] {s : ι → ι' → set α} (hs : ∀ (i : ι), monotone (s i)) :
(⋃ (j : ι'), ⋂ (i : ι), s i j) = ⋂ (i : ι), ⋃ (j : ι'), s i j

An increasing union distributes over finite intersection.

theorem set.Union_Inter_of_antitone {ι : Type u_1} {ι' : Type u_2} {α : Type u_3} [fintype ι] [preorder ι'] [is_directed ι' (function.swap has_le.le)] [nonempty ι'] {s : ι → ι' → set α} (hs : ∀ (i : ι), antitone (s i)) :
(⋃ (j : ι'), ⋂ (i : ι), s i j) = ⋂ (i : ι), ⋃ (j : ι'), s i j

A decreasing union distributes over finite intersection.

theorem set.Inter_Union_of_monotone {ι : Type u_1} {ι' : Type u_2} {α : Type u_3} [fintype ι] [preorder ι'] [is_directed ι' (function.swap has_le.le)] [nonempty ι'] {s : ι → ι' → set α} (hs : ∀ (i : ι), monotone (s i)) :
(⋂ (j : ι'), ⋃ (i : ι), s i j) = ⋃ (i : ι), ⋂ (j : ι'), s i j

An increasing intersection distributes over finite union.

theorem set.Inter_Union_of_antitone {ι : Type u_1} {ι' : Type u_2} {α : Type u_3} [fintype ι] [preorder ι'] [is_directed ι' has_le.le] [nonempty ι'] {s : ι → ι' → set α} (hs : ∀ (i : ι), antitone (s i)) :
(⋂ (j : ι'), ⋃ (i : ι), s i j) = ⋃ (i : ι), ⋂ (j : ι'), s i j

A decreasing intersection distributes over finite union.

theorem set.Union_pi_of_monotone {ι : Type u_1} {ι' : Type u_2} [linear_order ι'] [nonempty ι'] {α : ι → Type u_3} {I : set ι} {s : Π (i : ι), ι' → set (α i)} (hI : I.finite) (hs : ∀ (i : ι), i Imonotone (s i)) :
(⋃ (j : ι'), I.pi (λ (i : ι), s i j)) = I.pi (λ (i : ι), ⋃ (j : ι'), s i j)
theorem set.Union_univ_pi_of_monotone {ι : Type u_1} {ι' : Type u_2} [linear_order ι'] [nonempty ι'] [fintype ι] {α : ι → Type u_3} {s : Π (i : ι), ι' → set (α i)} (hs : ∀ (i : ι), monotone (s i)) :
(⋃ (j : ι'), set.univ.pi (λ (i : ι), s i j)) = set.univ.pi (λ (i : ι), ⋃ (j : ι'), s i j)
theorem set.range_find_greatest_subset {α : Type u} {P : α → → Prop} [Π (x : α), decidable_pred (P x)] {b : } :
set.range (λ (x : α), nat.find_greatest (P x) b) (finset.range (b + 1))
theorem set.finite_range_find_greatest {α : Type u} {P : α → → Prop} [Π (x : α), decidable_pred (P x)] {b : } :
(set.range (λ (x : α), nat.find_greatest (P x) b)).finite
theorem set.finite.exists_maximal_wrt {α : Type u} {β : Type v} [partial_order β] (f : α → β) (s : set α) (h : s.finite) :
s.nonempty(∃ (a : α) (H : a s), ∀ (a' : α), a' sf a f a'f a = f a')
@[protected]
theorem set.finite.bdd_above {α : Type u} [semilattice_sup α] [nonempty α] {s : set α} (hs : s.finite) :

A finite set is bounded above.

theorem set.finite.bdd_above_bUnion {α : Type u} {β : Type v} [semilattice_sup α] [nonempty α] {I : set β} {S : β → set α} (H : I.finite) :
bdd_above (⋃ (i : β) (H : i I), S i) ∀ (i : β), i Ibdd_above (S i)

A finite union of sets which are all bounded above is still bounded above.

theorem set.infinite_of_not_bdd_above {α : Type u} [semilattice_sup α] [nonempty α] {s : set α} :
@[protected]
theorem set.finite.bdd_below {α : Type u} [semilattice_inf α] [nonempty α] {s : set α} (hs : s.finite) :

A finite set is bounded below.

theorem set.finite.bdd_below_bUnion {α : Type u} {β : Type v} [semilattice_inf α] [nonempty α] {I : set β} {S : β → set α} (H : I.finite) :
bdd_below (⋃ (i : β) (H : i I), S i) ∀ (i : β), i Ibdd_below (S i)

A finite union of sets which are all bounded below is still bounded below.

theorem set.infinite_of_not_bdd_below {α : Type u} [semilattice_inf α] [nonempty α] {s : set α} :
@[protected]
theorem finset.bdd_above {α : Type u} [semilattice_sup α] [nonempty α] (s : finset α) :

A finset is bounded above.

@[protected]
theorem finset.bdd_below {α : Type u} [semilattice_inf α] [nonempty α] (s : finset α) :

A finset is bounded below.

theorem set.finite_of_forall_between_eq_endpoints {α : Type u_1} [linear_order α] (s : set α) (h : ∀ (x : α), x s∀ (y : α), y s∀ (z : α), z sx yy zx = y y = z) :

If a set s does not contain any elements between any pair of elements x, z ∈ s with x ≤ z (i.e if given x, y, z ∈ s such that x ≤ y ≤ z, then y is either x or z), then s is finite.

Finset #

theorem finset.finite_to_set {α : Type u} (s : finset α) :

Gives a set.finite for the finset coerced to a set. This is a wrapper around set.finite_of_fintype.

@[simp]
theorem finset.finite_to_set_to_finset {α : Type u_1} (s : finset α) :