Normed spaces over R or C #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file is about results on normed spaces over the fields ℝ and ℂ.
Main definitions #
None.
Main theorems #
- continuous_linear_map.op_norm_bound_of_ball_bound: A bound on the norms of values of a linear map in a ball yields a bound on the operator norm.
Notes #
This file exists mainly to avoid importing is_R_or_C in the main normed space theory files.
    
theorem
linear_map.bound_of_ball_bound'
    {𝕜 : Type u_1}
    [is_R_or_C 𝕜]
    {E : Type u_2}
    [normed_add_comm_group E]
    [normed_space 𝕜 E]
    {r : ℝ}
    (r_pos : 0 < r)
    (c : ℝ)
    (f : E →ₗ[𝕜] 𝕜)
    (h : ∀ (z : E), z ∈ metric.closed_ball 0 r → ‖⇑f z‖ ≤ c)
    (z : E) :
linear_map.bound_of_ball_bound is a version of this over arbitrary nontrivially normed fields.
It produces a less precise bound so we keep both versions.
    
theorem
normed_space.sphere_nonempty_is_R_or_C
    (𝕜 : Type u_1)
    [is_R_or_C 𝕜]
    {E : Type u_2}
    [normed_add_comm_group E]
    [normed_space 𝕜 E]
    [nontrivial E]
    {r : ℝ}
    (hr : 0 ≤ r) :
nonempty ↥(metric.sphere 0 r)