Normed spaces over R or C #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file is about results on normed spaces over the fields ℝ
and ℂ
.
Main definitions #
None.
Main theorems #
continuous_linear_map.op_norm_bound_of_ball_bound
: A bound on the norms of values of a linear map in a ball yields a bound on the operator norm.
Notes #
This file exists mainly to avoid importing is_R_or_C
in the main normed space theory files.
theorem
linear_map.bound_of_ball_bound'
{𝕜 : Type u_1}
[is_R_or_C 𝕜]
{E : Type u_2}
[normed_add_comm_group E]
[normed_space 𝕜 E]
{r : ℝ}
(r_pos : 0 < r)
(c : ℝ)
(f : E →ₗ[𝕜] 𝕜)
(h : ∀ (z : E), z ∈ metric.closed_ball 0 r → ‖⇑f z‖ ≤ c)
(z : E) :
linear_map.bound_of_ball_bound
is a version of this over arbitrary nontrivially normed fields.
It produces a less precise bound so we keep both versions.
theorem
normed_space.sphere_nonempty_is_R_or_C
(𝕜 : Type u_1)
[is_R_or_C 𝕜]
{E : Type u_2}
[normed_add_comm_group E]
[normed_space 𝕜 E]
[nontrivial E]
{r : ℝ}
(hr : 0 ≤ r) :
nonempty ↥(metric.sphere 0 r)