mathlib3 documentation

combinatorics.set_family.ahlswede_zhang

The Ahlswede-Zhang identity #

This file proves the Ahlswede-Zhang identity, which is a nontrivial relation between the size of the "truncated unions" of a set family. It sharpens the Lubell-Yamamoto-Meshalkin inequality finset.sum_card_slice_div_choose_le_one, by making explicit the correction term.

For a set family 𝒜, the Ahlswede-Zhang identity states that the sum of |⋂ B ∈ 𝒜, B ⊆ A, B|/(|A| * n.choose |A|) is exactly 1.

Main declarations #

References #

Truncated supremum, truncated infimum #

def finset.truncated_sup {α : Type u_1} [semilattice_sup α] [order_top α] [decidable_rel has_le.le] (s : finset α) (a : α) :
α

The infimum of the elements of s less than a if there are some, otherwise .

Equations
theorem finset.truncated_sup_of_mem {α : Type u_1} [semilattice_sup α] [order_top α] [decidable_rel has_le.le] {s : finset α} {a : α} (h : a lower_closure s) :
s.truncated_sup a = (finset.filter (λ (b : α), a b) s).sup' _ id
theorem finset.le_truncated_sup {α : Type u_1} [semilattice_sup α] [order_top α] [decidable_rel has_le.le] {s : finset α} {a : α} :
def finset.truncated_inf {α : Type u_1} [semilattice_inf α] [bounded_order α] [decidable_rel has_le.le] (s : finset α) (a : α) :
α

The infimum of the elements of s less than a if there are some, otherwise .

Equations
theorem finset.truncated_inf_of_mem {α : Type u_1} [semilattice_inf α] [bounded_order α] [decidable_rel has_le.le] {s : finset α} {a : α} (h : a upper_closure s) :
s.truncated_inf a = (finset.filter (λ (b : α), b a) s).inf' _ id
theorem finset.card_truncated_sup_union_add_card_truncated_sup_infs {α : Type u_1} [decidable_eq α] [fintype α] (𝒜 ℬ : finset (finset α)) (s : finset α) :
((𝒜 ℬ).truncated_sup s).card + ((𝒜 ℬ).truncated_sup s).card = (𝒜.truncated_sup s).card + (ℬ.truncated_sup s).card