The empty category #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Defines a category structure on pempty
, and the unique functor pempty ⥤ C
for any category C
.
Equivalence between two empty categories.
Equations
- category_theory.functor.empty_equivalence = category_theory.equivalence.mk {obj := pempty.elim ∘ category_theory.discrete.as, map := λ (x : category_theory.discrete pempty), x.as.elim, map_id' := category_theory.functor.empty_equivalence._proof_1, map_comp' := category_theory.functor.empty_equivalence._proof_2} {obj := pempty.elim ∘ category_theory.discrete.as, map := λ (x : category_theory.discrete pempty), x.as.elim, map_id' := category_theory.functor.empty_equivalence._proof_3, map_comp' := category_theory.functor.empty_equivalence._proof_4} (id {hom := category_theory.functor.empty_equivalence._aux_2, inv := category_theory.functor.empty_equivalence._aux_4, hom_inv_id' := category_theory.functor.empty_equivalence._proof_9, inv_hom_id' := category_theory.functor.empty_equivalence._proof_10}) (id {hom := category_theory.functor.empty_equivalence._aux_6, inv := category_theory.functor.empty_equivalence._aux_8, hom_inv_id' := category_theory.functor.empty_equivalence._proof_11, inv_hom_id' := category_theory.functor.empty_equivalence._proof_12})
The canonical functor out of the empty category.
def
category_theory.functor.empty_ext
{C : Type u}
[category_theory.category C]
(F G : category_theory.discrete pempty ⥤ C) :
F ≅ G
Any two functors out of the empty category are isomorphic.
Equations
- F.empty_ext G = category_theory.discrete.nat_iso (λ (x : category_theory.discrete pempty), x.as.elim)
def
category_theory.functor.unique_from_empty
{C : Type u}
[category_theory.category C]
(F : category_theory.discrete pempty ⥤ C) :
Any functor out of the empty category is isomorphic to the canonical functor from the empty category.
Equations
theorem
category_theory.functor.empty_ext'
{C : Type u}
[category_theory.category C]
(F G : category_theory.discrete pempty ⥤ C) :
F = G
Any two functors out of the empty category are equal. You probably want to use
empty_ext
instead of this.