Category of topological commutative rings #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We introduce the category TopCommRing
of topological commutative rings together with the relevant
forgetful functors to topological spaces and commutative rings.
- α : Type ?
- is_comm_ring : comm_ring self.α
- is_topological_space : topological_space self.α
- is_topological_ring : topological_ring self.α
A bundled topological commutative ring.
Instances for TopCommRing
@[protected, instance]
Equations
- TopCommRing.inhabited = {default := {α := punit, is_comm_ring := punit.comm_ring, is_topological_space := punit.topological_space, is_topological_ring := TopCommRing.inhabited._proof_1}}
@[protected, instance]
Equations
@[protected, instance]
Equations
- TopCommRing.category_theory.category = {to_category_struct := {to_quiver := {hom := λ (R S : TopCommRing), {f // continuous ⇑f}}, id := λ (R : TopCommRing), ⟨ring_hom.id ↥R (non_assoc_ring.to_non_assoc_semiring ↥R), _⟩, comp := λ (R S T : TopCommRing) (f : R ⟶ S) (g : S ⟶ T), ⟨g.val.comp f.val, _⟩}, id_comp' := TopCommRing.category_theory.category._proof_3, comp_id' := TopCommRing.category_theory.category._proof_4, assoc' := TopCommRing.category_theory.category._proof_5}
@[protected, instance]
Equations
- TopCommRing.category_theory.concrete_category = category_theory.concrete_category.mk {obj := λ (R : TopCommRing), ↥R, map := λ (R S : TopCommRing) (f : R ⟶ S), ⇑(f.val), map_id' := TopCommRing.category_theory.concrete_category._proof_1, map_comp' := TopCommRing.category_theory.concrete_category._proof_2}
Construct a bundled TopCommRing
from the underlying type and the appropriate typeclasses.
Equations
@[simp]
theorem
TopCommRing.coe_of
(X : Type u)
[comm_ring X]
[topological_space X]
[topological_ring X] :
↥(TopCommRing.of X) = X
@[protected, instance]
@[protected, instance]
Equations
- TopCommRing.has_forget_to_CommRing = category_theory.has_forget₂.mk' (λ (R : TopCommRing), CommRing.of ↥R) TopCommRing.has_forget_to_CommRing._proof_1 (λ (R S : TopCommRing) (f : R ⟶ S), f.val) TopCommRing.has_forget_to_CommRing._proof_2
@[protected, instance]
Equations
@[protected, instance]
The forgetful functor to Top.
Equations
- TopCommRing.has_forget_to_Top = category_theory.has_forget₂.mk' (λ (R : TopCommRing), Top.of ↥R) TopCommRing.has_forget_to_Top._proof_1 (λ (R S : TopCommRing) (f : R ⟶ S), {to_fun := ⇑(f.val), continuous_to_fun := _}) TopCommRing.has_forget_to_Top._proof_3
@[protected, instance]
@[protected, instance]
The forgetful functors to Type
do not reflect isomorphisms,
but the forgetful functor from TopCommRing
to Top
does.