Universally closed morphism #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
A morphism of schemes f : X ⟶ Y
is universally closed if X ×[Y] Y' ⟶ Y'
is a closed map
for all base change Y' ⟶ Y
.
We show that being universally closed is local at the target, and is stable under compositions and base changes.
@[class]
structure
algebraic_geometry.universally_closed
{X Y : algebraic_geometry.Scheme}
(f : X ⟶ Y) :
Prop
A morphism of schemes f : X ⟶ Y
is universally closed if the base change X ×[Y] Y' ⟶ Y'
along any morphism Y' ⟶ Y
is (topologically) a closed map.
@[protected, instance]
def
algebraic_geometry.universally_closed_type_comp
{X Y Z : algebraic_geometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[hf : algebraic_geometry.universally_closed f]
[hg : algebraic_geometry.universally_closed g] :
@[protected, instance]
def
algebraic_geometry.universally_closed_fst
{X Y Z : algebraic_geometry.Scheme}
(f : X ⟶ Z)
(g : Y ⟶ Z)
[hg : algebraic_geometry.universally_closed g] :
@[protected, instance]
def
algebraic_geometry.universally_closed_snd
{X Y Z : algebraic_geometry.Scheme}
(f : X ⟶ Z)
(g : Y ⟶ Z)
[hf : algebraic_geometry.universally_closed f] :
theorem
algebraic_geometry.morphism_restrict_base
{X Y : algebraic_geometry.Scheme}
(f : X ⟶ Y)
(U : topological_space.opens ↥(Y.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)) :
theorem
algebraic_geometry.universally_closed.open_cover_iff
{X Y : algebraic_geometry.Scheme}
(f : X ⟶ Y)
(𝒰 : Y.open_cover) :