mathlib3 documentation

order.bounds.order_iso

Order isomorhpisms and bounds. #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

theorem order_iso.upper_bounds_image {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (f : α ≃o β) {s : set α} :
theorem order_iso.lower_bounds_image {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (f : α ≃o β) {s : set α} :
@[simp]
theorem order_iso.is_lub_image {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (f : α ≃o β) {s : set α} {x : β} :
is_lub (f '' s) x is_lub s ((f.symm) x)
theorem order_iso.is_lub_image' {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (f : α ≃o β) {s : set α} {x : α} :
is_lub (f '' s) (f x) is_lub s x
@[simp]
theorem order_iso.is_glb_image {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (f : α ≃o β) {s : set α} {x : β} :
is_glb (f '' s) x is_glb s ((f.symm) x)
theorem order_iso.is_glb_image' {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (f : α ≃o β) {s : set α} {x : α} :
is_glb (f '' s) (f x) is_glb s x
@[simp]
theorem order_iso.is_lub_preimage {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (f : α ≃o β) {s : set β} {x : α} :
is_lub (f ⁻¹' s) x is_lub s (f x)
theorem order_iso.is_lub_preimage' {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (f : α ≃o β) {s : set β} {x : β} :
is_lub (f ⁻¹' s) ((f.symm) x) is_lub s x
@[simp]
theorem order_iso.is_glb_preimage {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (f : α ≃o β) {s : set β} {x : α} :
is_glb (f ⁻¹' s) x is_glb s (f x)
theorem order_iso.is_glb_preimage' {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (f : α ≃o β) {s : set β} {x : β} :
is_glb (f ⁻¹' s) ((f.symm) x) is_glb s x