Complex roots of unity #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file we show that the n
-th complex roots of unity
are exactly the complex numbers e ^ (2 * real.pi * complex.I * (i / n))
for i ∈ finset.range n
.
Main declarations #
complex.mem_roots_of_unity
: the complexn
-th roots of unity are exactly the complex numbers of the forme ^ (2 * real.pi * complex.I * (i / n))
for somei < n
.complex.card_roots_of_unity
: the number ofn
-th roots of unity is exactlyn
.
theorem
is_primitive_root.arg_ext
{n m : ℕ}
{ζ μ : ℂ}
(hζ : is_primitive_root ζ n)
(hμ : is_primitive_root μ m)
(hn : n ≠ 0)
(hm : m ≠ 0)
(h : ζ.arg = μ.arg) :
ζ = μ
theorem
is_primitive_root.arg_eq_zero_iff
{n : ℕ}
{ζ : ℂ}
(hζ : is_primitive_root ζ n)
(hn : n ≠ 0) :