Equivalence between Group
and AddGroup
#
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file contains two equivalences:
Group_AddGroup_equivalence
: the equivalence betweenGroup
andAddGroup
by sendingX : Group
toadditive X
andY : AddGroup
tomultiplicative Y
.CommGroup_AddCommGroup_equivalence
: the equivalence betweenCommGroup
andAddCommGroup
by sendingX : CommGroup
toadditive X
andY : AddCommGroup
tomultiplicative Y
.
@[simp]
@[simp]
@[simp]
The functor CommGroup ⥤ AddCommGroup
by sending X ↦ additive X
and f ↦ f
.
Equations
- CommGroup.to_AddCommGroup = {obj := λ (X : CommGroup), AddCommGroup.of (additive ↥X), map := λ (X Y : CommGroup), ⇑monoid_hom.to_additive, map_id' := CommGroup.to_AddCommGroup._proof_1, map_comp' := CommGroup.to_AddCommGroup._proof_2}
@[simp]
@[simp]
@[simp]
The functor AddGroup ⥤ Group
by sending X ↦ multiplicative Y
and f ↦ f
.
Equations
- AddGroup.to_Group = {obj := λ (X : AddGroup), Group.of (multiplicative ↥X), map := λ (X Y : AddGroup), ⇑add_monoid_hom.to_multiplicative, map_id' := AddGroup.to_Group._proof_1, map_comp' := AddGroup.to_Group._proof_2}
The functor AddCommGroup ⥤ CommGroup
by sending X ↦ multiplicative Y
and f ↦ f
.
Equations
- AddCommGroup.to_CommGroup = {obj := λ (X : AddCommGroup), CommGroup.of (multiplicative ↥X), map := λ (X Y : AddCommGroup), ⇑add_monoid_hom.to_multiplicative, map_id' := AddCommGroup.to_CommGroup._proof_1, map_comp' := AddCommGroup.to_CommGroup._proof_2}
@[simp]
@[simp]
@[simp]
theorem
Group_AddGroup_equivalence_inverse_obj_str_zpow
(X : AddGroup)
(ᾰ : ℤ)
(ᾰ_1 : multiplicative ↥X) :
group.zpow ᾰ ᾰ_1 = ᾰ_1 ^ ᾰ
@[simp]
theorem
Group_AddGroup_equivalence_functor_obj_str_add
(X : Group)
(ᾰ ᾰ_1 : additive ↥X) :
ᾰ + ᾰ_1 = sub_neg_monoid.add ᾰ ᾰ_1
@[simp]
@[simp]
theorem
Group_AddGroup_equivalence_counit_iso_hom_app_apply
(X : AddGroup)
(ᾰ : ↥((AddGroup.to_Group ⋙ Group.to_AddGroup).obj X)) :
@[simp]
theorem
Group_AddGroup_equivalence_functor_map_apply
(X Y : Group)
(ᾰ : ↥X →* ↥Y)
(a : additive ↥X) :
⇑(Group_AddGroup_equivalence.functor.map ᾰ) a = ⇑additive.of_mul (⇑ᾰ (⇑additive.to_mul a))
@[simp]
theorem
Group_AddGroup_equivalence_functor_obj_str_neg
(X : Group)
(ᾰ : additive ↥X) :
-ᾰ = sub_neg_monoid.neg ᾰ
@[simp]
@[simp]
theorem
Group_AddGroup_equivalence_inverse_obj_str_npow
(X : AddGroup)
(ᾰ : ℕ)
(ᾰ_1 : multiplicative ↥X) :
group.npow ᾰ ᾰ_1 = div_inv_monoid.npow ᾰ ᾰ_1
@[simp]
theorem
Group_AddGroup_equivalence_unit_iso_inv_app_apply
(X : Group)
(ᾰ : ↥((Group.to_AddGroup ⋙ AddGroup.to_Group).obj X)) :
@[simp]
@[simp]
theorem
Group_AddGroup_equivalence_inverse_obj_str_mul
(X : AddGroup)
(ᾰ ᾰ_1 : multiplicative ↥X) :
ᾰ * ᾰ_1 = div_inv_monoid.mul ᾰ ᾰ_1
@[simp]
theorem
Group_AddGroup_equivalence_inverse_map_apply
(X Y : AddGroup)
(ᾰ : ↥X →+ ↥Y)
(a : multiplicative ↥X) :
The equivalence of categories between Group
and AddGroup
Equations
- Group_AddGroup_equivalence = category_theory.equivalence.mk Group.to_AddGroup AddGroup.to_Group (category_theory.nat_iso.of_components (λ (X : Group), (mul_equiv.multiplicative_additive ↥X).to_Group_iso) Group_AddGroup_equivalence._proof_1) (category_theory.nat_iso.of_components (λ (X : AddGroup), (add_equiv.additive_multiplicative ↥X).to_AddGroup_iso) Group_AddGroup_equivalence._proof_2)
@[simp]
theorem
Group_AddGroup_equivalence_functor_obj_str_zsmul
(X : Group)
(ᾰ : ℤ)
(ᾰ_1 : additive ↥X) :
add_group.zsmul ᾰ ᾰ_1 = ᾰ • ᾰ_1
@[simp]
theorem
Group_AddGroup_equivalence_functor_obj_str_sub
(X : Group)
(ᾰ ᾰ_1 : additive ↥X) :
ᾰ - ᾰ_1 = sub_neg_monoid.sub ᾰ ᾰ_1
@[simp]
theorem
Group_AddGroup_equivalence_inverse_obj_str_div
(X : AddGroup)
(ᾰ ᾰ_1 : multiplicative ↥X) :
ᾰ / ᾰ_1 = div_inv_monoid.div ᾰ ᾰ_1
@[simp]
@[simp]
theorem
Group_AddGroup_equivalence_functor_obj_str_nsmul
(X : Group)
(ᾰ : ℕ)
(ᾰ_1 : additive ↥X) :
add_group.nsmul ᾰ ᾰ_1 = sub_neg_monoid.nsmul ᾰ ᾰ_1
@[simp]
@[simp]
theorem
CommGroup_AddCommGroup_equivalence_functor_obj_str_nsmul
(X : CommGroup)
(ᾰ : ℕ)
(ᾰ_1 : additive ↥X) :
add_comm_group.nsmul ᾰ ᾰ_1 = add_group.nsmul ᾰ ᾰ_1
The equivalence of categories between CommGroup
and AddCommGroup
.
Equations
- CommGroup_AddCommGroup_equivalence = category_theory.equivalence.mk CommGroup.to_AddCommGroup AddCommGroup.to_CommGroup (category_theory.nat_iso.of_components (λ (X : CommGroup), (mul_equiv.multiplicative_additive ↥X).to_CommGroup_iso) CommGroup_AddCommGroup_equivalence._proof_1) (category_theory.nat_iso.of_components (λ (X : AddCommGroup), (add_equiv.additive_multiplicative ↥X).to_AddCommGroup_iso) CommGroup_AddCommGroup_equivalence._proof_2)
@[simp]
theorem
CommGroup_AddCommGroup_equivalence_inverse_map_apply
(X Y : AddCommGroup)
(ᾰ : ↥X →+ ↥Y)
(a : multiplicative ↥X) :
@[simp]
@[simp]
@[simp]
theorem
CommGroup_AddCommGroup_equivalence_inverse_obj_str_div
(X : AddCommGroup)
(ᾰ ᾰ_1 : multiplicative ↥X) :
@[simp]
@[simp]
theorem
CommGroup_AddCommGroup_equivalence_counit_iso_inv_app_apply
(X : AddCommGroup)
(ᾰ : ↥((𝟭 AddCommGroup).obj X)) :
@[simp]
@[simp]
theorem
CommGroup_AddCommGroup_equivalence_functor_obj_str_add
(X : CommGroup)
(ᾰ ᾰ_1 : additive ↥X) :
ᾰ + ᾰ_1 = add_group.add ᾰ ᾰ_1
@[simp]
theorem
CommGroup_AddCommGroup_equivalence_inverse_obj_str_npow
(X : AddCommGroup)
(ᾰ : ℕ)
(ᾰ_1 : multiplicative ↥X) :
comm_group.npow ᾰ ᾰ_1 = group.npow ᾰ ᾰ_1
@[simp]
@[simp]
theorem
CommGroup_AddCommGroup_equivalence_functor_obj_str_sub
(X : CommGroup)
(ᾰ ᾰ_1 : additive ↥X) :
ᾰ - ᾰ_1 = add_group.sub ᾰ ᾰ_1
@[simp]
theorem
CommGroup_AddCommGroup_equivalence_functor_obj_str_neg
(X : CommGroup)
(ᾰ : additive ↥X) :
-ᾰ = add_group.neg ᾰ
@[simp]
theorem
CommGroup_AddCommGroup_equivalence_functor_obj_str_zsmul
(X : CommGroup)
(ᾰ : ℤ)
(ᾰ_1 : additive ↥X) :
add_comm_group.zsmul ᾰ ᾰ_1 = add_group.zsmul ᾰ ᾰ_1
@[simp]
theorem
CommGroup_AddCommGroup_equivalence_inverse_obj_str_inv
(X : AddCommGroup)
(ᾰ : multiplicative ↥X) :
@[simp]
theorem
CommGroup_AddCommGroup_equivalence_unit_iso_inv_app_apply
(X : CommGroup)
(ᾰ : ↥((CommGroup.to_AddCommGroup ⋙ AddCommGroup.to_CommGroup).obj X)) :
@[simp]
theorem
CommGroup_AddCommGroup_equivalence_inverse_obj_str_mul
(X : AddCommGroup)
(ᾰ ᾰ_1 : multiplicative ↥X) :
@[simp]
theorem
CommGroup_AddCommGroup_equivalence_inverse_obj_str_zpow
(X : AddCommGroup)
(ᾰ : ℤ)
(ᾰ_1 : multiplicative ↥X) :
comm_group.zpow ᾰ ᾰ_1 = group.zpow ᾰ ᾰ_1