Direct sums of Lie algebras and Lie modules #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Direct sums of Lie algebras and Lie modules carry natural algebra and module structures.
Tags #
lie algebra, lie module, direct sum
The direct sum of Lie modules over a fixed Lie algebra carries a natural Lie module structure.
Equations
- direct_sum.lie_ring_module = {to_has_bracket := {bracket := λ (x : L) (m : direct_sum ι (λ (i : ι), M i)), dfinsupp.map_range (λ (i : ι) (m' : (λ (i : ι), M i) i), ⁅x, m'⁆) _ m}, add_lie := _, lie_add := _, leibniz_lie := _}
Equations
- direct_sum.lie_module = {smul_lie := _, lie_smul := _}
The inclusion of each component into a direct sum as a morphism of Lie modules.
Equations
- direct_sum.lie_module_of R ι L M j = {to_linear_map := {to_fun := (direct_sum.lof R ι M j).to_fun, map_add' := _, map_smul' := _}, map_lie' := _}
The projection map onto one component, as a morphism of Lie modules.
Equations
- direct_sum.lie_module_component R ι L M j = {to_linear_map := {to_fun := (direct_sum.component R ι M j).to_fun, map_add' := _, map_smul' := _}, map_lie' := _}
The direct sum of Lie algebras carries a natural Lie algebra structure.
Equations
- direct_sum.lie_ring L = {to_add_comm_group := {add := add_comm_group.add infer_instance, add_assoc := _, zero := add_comm_group.zero infer_instance, zero_add := _, add_zero := _, nsmul := add_comm_group.nsmul infer_instance, nsmul_zero' := _, nsmul_succ' := _, neg := add_comm_group.neg infer_instance, sub := add_comm_group.sub infer_instance, sub_eq_add_neg := _, zsmul := add_comm_group.zsmul infer_instance, zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _, add_comm := _}, to_has_bracket := {bracket := dfinsupp.zip_with (λ (i : ι) (x y : (λ (i : ι), L i) i), ⁅x, y⁆) _}, add_lie := _, lie_add := _, lie_self := _, leibniz_lie := _}
Equations
- direct_sum.lie_algebra L = {to_module := {to_distrib_mul_action := module.to_distrib_mul_action infer_instance, add_smul := _, zero_smul := _}, lie_smul := _}
The inclusion of each component into the direct sum as morphism of Lie algebras.
Equations
- direct_sum.lie_algebra_of R ι L j = {to_linear_map := {to_fun := ⇑(direct_sum.of L j), map_add' := _, map_smul' := _}, map_lie' := _}
The projection map onto one component, as a morphism of Lie algebras.
Equations
- direct_sum.lie_algebra_component R ι L j = {to_linear_map := {to_fun := ⇑(direct_sum.component R ι L j), map_add' := _, map_smul' := _}, map_lie' := _}
Given a family of Lie algebras L i
, together with a family of morphisms of Lie algebras
f i : L i →ₗ⁅R⁆ L'
into a fixed Lie algebra L'
, we have a natural linear map:
(⨁ i, L i) →ₗ[R] L'
. If in addition ⁅f i x, f j y⁆ = 0
for any x ∈ L i
and y ∈ L j
(i ≠ j
)
then this map is a morphism of Lie algebras.
Equations
- direct_sum.to_lie_algebra L' f hf = {to_linear_map := {to_fun := ⇑(direct_sum.to_module R ι L' (λ (i : ι), ↑(f i))), map_add' := _, map_smul' := _}, map_lie' := _}
The fact that this instance is necessary seems to be a bug in typeclass inference. See [this Zulip thread](https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/ Typeclass.20resolution.20under.20binders/near/245151099).
Equations
- direct_sum.lie_ring_of_ideals I = direct_sum.lie_ring (λ (i : ι), ↥(I i))
See direct_sum.lie_ring_of_ideals
comment.
Equations
- direct_sum.lie_algebra_of_ideals I = direct_sum.lie_algebra (λ (i : ι), ↥(I i))