Limits involving zero objects #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Binary products and coproducts with a zero object always exist, and pullbacks/pushouts over a zero object are products/coproducts.
The limit cone for the product with a zero object.
Equations
The limit cone for the product with a zero object is limiting.
Equations
A zero object is a left unit for categorical product.
The limit cone for the product with a zero object.
Equations
The limit cone for the product with a zero object is limiting.
Equations
A zero object is a right unit for categorical product.
The colimit cocone for the coproduct with a zero object.
The colimit cocone for the coproduct with a zero object is colimiting.
Equations
A zero object is a left unit for categorical coproduct.
The colimit cocone for the coproduct with a zero object.
The colimit cocone for the coproduct with a zero object is colimiting.
Equations
A zero object is a right unit for categorical coproduct.
The pullback over the zeron object is the product.
Equations
- category_theory.limits.pullback_zero_zero_iso X Y = category_theory.limits.limit.iso_limit_cone {cone := category_theory.limits.pullback_cone.mk category_theory.limits.prod.fst category_theory.limits.prod.snd _, is_limit := is_pullback_of_is_terminal_is_product 0 0 category_theory.limits.prod.fst category_theory.limits.prod.snd category_theory.limits.has_zero_object.zero_is_terminal (category_theory.limits.prod_is_prod X Y)}
The pushout over the zero object is the coproduct.
Equations
- category_theory.limits.pushout_zero_zero_iso X Y = category_theory.limits.colimit.iso_colimit_cocone {cocone := category_theory.limits.pushout_cocone.mk category_theory.limits.coprod.inl category_theory.limits.coprod.inr _, is_colimit := is_pushout_of_is_initial_is_coproduct category_theory.limits.coprod.inl category_theory.limits.coprod.inr 0 0 category_theory.limits.has_zero_object.zero_is_initial (category_theory.limits.coprod_is_coprod X Y)}