Ordered monoids #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file develops some additional material on ordered monoids.
Pullback an ordered_comm_monoid
under an injective map.
See note [reducible non-instances].
Equations
- function.injective.ordered_comm_monoid f hf one mul npow = {mul := comm_monoid.mul (function.injective.comm_monoid f hf one mul npow), mul_assoc := _, one := comm_monoid.one (function.injective.comm_monoid f hf one mul npow), one_mul := _, mul_one := _, npow := comm_monoid.npow (function.injective.comm_monoid f hf one mul npow), npow_zero' := _, npow_succ' := _, mul_comm := _, le := partial_order.le (partial_order.lift f hf), lt := partial_order.lt (partial_order.lift f hf), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, mul_le_mul_left := _}
Pullback an ordered_add_comm_monoid
under an injective map.
Equations
- function.injective.ordered_add_comm_monoid f hf one mul npow = {add := add_comm_monoid.add (function.injective.add_comm_monoid f hf one mul npow), add_assoc := _, zero := add_comm_monoid.zero (function.injective.add_comm_monoid f hf one mul npow), zero_add := _, add_zero := _, nsmul := add_comm_monoid.nsmul (function.injective.add_comm_monoid f hf one mul npow), nsmul_zero' := _, nsmul_succ' := _, add_comm := _, le := partial_order.le (partial_order.lift f hf), lt := partial_order.lt (partial_order.lift f hf), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, add_le_add_left := _}
Pullback a linear_ordered_comm_monoid
under an injective map.
See note [reducible non-instances].
Equations
- function.injective.linear_ordered_comm_monoid f hf one mul npow hsup hinf = {le := ordered_comm_monoid.le (function.injective.ordered_comm_monoid f hf one mul npow), lt := ordered_comm_monoid.lt (function.injective.ordered_comm_monoid f hf one mul npow), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_total := _, decidable_le := linear_order.decidable_le (linear_order.lift f hf hsup hinf), decidable_eq := linear_order.decidable_eq (linear_order.lift f hf hsup hinf), decidable_lt := linear_order.decidable_lt (linear_order.lift f hf hsup hinf), max := linear_order.max (linear_order.lift f hf hsup hinf), max_def := _, min := linear_order.min (linear_order.lift f hf hsup hinf), min_def := _, mul := ordered_comm_monoid.mul (function.injective.ordered_comm_monoid f hf one mul npow), mul_assoc := _, one := ordered_comm_monoid.one (function.injective.ordered_comm_monoid f hf one mul npow), one_mul := _, mul_one := _, npow := ordered_comm_monoid.npow (function.injective.ordered_comm_monoid f hf one mul npow), npow_zero' := _, npow_succ' := _, mul_comm := _, mul_le_mul_left := _}
Pullback an ordered_add_comm_monoid
under an injective map.
Equations
- function.injective.linear_ordered_add_comm_monoid f hf one mul npow hsup hinf = {le := ordered_add_comm_monoid.le (function.injective.ordered_add_comm_monoid f hf one mul npow), lt := ordered_add_comm_monoid.lt (function.injective.ordered_add_comm_monoid f hf one mul npow), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_total := _, decidable_le := linear_order.decidable_le (linear_order.lift f hf hsup hinf), decidable_eq := linear_order.decidable_eq (linear_order.lift f hf hsup hinf), decidable_lt := linear_order.decidable_lt (linear_order.lift f hf hsup hinf), max := linear_order.max (linear_order.lift f hf hsup hinf), max_def := _, min := linear_order.min (linear_order.lift f hf hsup hinf), min_def := _, add := ordered_add_comm_monoid.add (function.injective.ordered_add_comm_monoid f hf one mul npow), add_assoc := _, zero := ordered_add_comm_monoid.zero (function.injective.ordered_add_comm_monoid f hf one mul npow), zero_add := _, add_zero := _, nsmul := ordered_add_comm_monoid.nsmul (function.injective.ordered_add_comm_monoid f hf one mul npow), nsmul_zero' := _, nsmul_succ' := _, add_comm := _, add_le_add_left := _}
The order embedding sending b
to a * b
, for some fixed a
.
See also order_iso.mul_left
when working in an ordered group.
Equations
- order_embedding.mul_left m = order_embedding.of_strict_mono (λ (n : α), m * n) _
The order embedding sending b
to a + b
, for some fixed a
.
See also order_iso.add_left
when working in an additive ordered group.
Equations
- order_embedding.add_left m = order_embedding.of_strict_mono (λ (n : α), m + n) _
The order embedding sending b
to b * a
, for some fixed a
.
See also order_iso.mul_right
when working in an ordered group.
Equations
- order_embedding.mul_right m = order_embedding.of_strict_mono (λ (n : α), n * m) _
The order embedding sending b
to b + a
, for some fixed a
.
See also order_iso.add_right
when working in an additive ordered group.
Equations
- order_embedding.add_right m = order_embedding.of_strict_mono (λ (n : α), n + m) _