mathlib3 documentation

analysis.complex.locally_uniform_limit

Locally uniform limits of holomorphic functions #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

This file gathers some results about locally uniform limits of holomorphic functions on an open subset of the complex plane.

Main results #

noncomputable def complex.cderiv {E : Type u_1} [normed_add_comm_group E] [normed_space E] [complete_space E] (r : ) (f : E) (z : ) :
E

A circle integral which coincides with deriv f z whenever one can apply the Cauchy formula for the derivative. It is useful in the proof that locally uniform limits of holomorphic functions are holomorphic, because it depends continuously on f for the uniform topology.

Equations
theorem complex.cderiv_eq_deriv {E : Type u_1} [normed_add_comm_group E] [normed_space E] [complete_space E] {U : set } {z : } {r : } {f : E} (hU : is_open U) (hf : differentiable_on f U) (hr : 0 < r) (hzr : metric.closed_ball z r U) :
theorem complex.norm_cderiv_le {E : Type u_1} [normed_add_comm_group E] [normed_space E] [complete_space E] {z : } {M r : } {f : E} (hr : 0 < r) (hf : (w : ), w metric.sphere z r f w M) :
theorem complex.cderiv_sub {E : Type u_1} [normed_add_comm_group E] [normed_space E] [complete_space E] {z : } {r : } {f g : E} (hr : 0 < r) (hf : continuous_on f (metric.sphere z r)) (hg : continuous_on g (metric.sphere z r)) :
theorem complex.norm_cderiv_lt {E : Type u_1} [normed_add_comm_group E] [normed_space E] [complete_space E] {z : } {M r : } {f : E} (hr : 0 < r) (hfM : (w : ), w metric.sphere z r f w < M) (hf : continuous_on f (metric.sphere z r)) :
theorem complex.norm_cderiv_sub_lt {E : Type u_1} [normed_add_comm_group E] [normed_space E] [complete_space E] {z : } {M r : } {f g : E} (hr : 0 < r) (hfg : (w : ), w metric.sphere z r f w - g w < M) (hf : continuous_on f (metric.sphere z r)) (hg : continuous_on g (metric.sphere z r)) :
theorem complex.tendsto_uniformly_on.cderiv {E : Type u_1} {ι : Type u_2} [normed_add_comm_group E] [normed_space E] [complete_space E] {K : set } {δ : } {φ : filter ι} {F : ι E} {f : E} (hF : tendsto_uniformly_on F f φ (metric.cthickening δ K)) (hδ : 0 < δ) (hFn : ∀ᶠ (n : ι) in φ, continuous_on (F n) (metric.cthickening δ K)) :
theorem complex.tendsto_uniformly_on_deriv_of_cthickening_subset {E : Type u_1} {ι : Type u_2} [normed_add_comm_group E] [normed_space E] [complete_space E] {U K : set } {φ : filter ι} {F : ι E} {f : E} (hf : tendsto_locally_uniformly_on F f φ U) (hF : ∀ᶠ (n : ι) in φ, differentiable_on (F n) U) {δ : } (hδ : 0 < δ) (hK : is_compact K) (hU : is_open U) (hKU : metric.cthickening δ K U) :
theorem complex.exists_cthickening_tendsto_uniformly_on {E : Type u_1} {ι : Type u_2} [normed_add_comm_group E] [normed_space E] [complete_space E] {U K : set } {φ : filter ι} {F : ι E} {f : E} (hf : tendsto_locally_uniformly_on F f φ U) (hF : ∀ᶠ (n : ι) in φ, differentiable_on (F n) U) (hK : is_compact K) (hU : is_open U) (hKU : K U) :
(δ : ) (H : δ > 0), metric.cthickening δ K U tendsto_uniformly_on (deriv F) (complex.cderiv δ f) φ K
theorem tendsto_locally_uniformly_on.differentiable_on {E : Type u_1} {ι : Type u_2} [normed_add_comm_group E] [normed_space E] [complete_space E] {U : set } {φ : filter ι} {F : ι E} {f : E} [φ.ne_bot] (hf : tendsto_locally_uniformly_on F f φ U) (hF : ∀ᶠ (n : ι) in φ, differentiable_on (F n) U) (hU : is_open U) :

A locally uniform limit of holomorphic functions on an open domain of the complex plane is holomorphic (the derivatives converge locally uniformly to that of the limit, which is proved as tendsto_locally_uniformly_on.deriv).

theorem tendsto_locally_uniformly_on.deriv {E : Type u_1} {ι : Type u_2} [normed_add_comm_group E] [normed_space E] [complete_space E] {U : set } {φ : filter ι} {F : ι E} {f : E} (hf : tendsto_locally_uniformly_on F f φ U) (hF : ∀ᶠ (n : ι) in φ, differentiable_on (F n) U) (hU : is_open U) :
theorem complex.differentiable_on_tsum_of_summable_norm {E : Type u_1} {ι : Type u_2} [normed_add_comm_group E] [normed_space E] [complete_space E] {U : set } {F : ι E} {u : ι } (hu : summable u) (hf : (i : ι), differentiable_on (F i) U) (hU : is_open U) (hF_le : (i : ι) (w : ), w U F i w u i) :
differentiable_on (λ (w : ), ∑' (i : ι), F i w) U

If the terms in the sum ∑' (i : ι), F i are uniformly bounded on U by a summable function, and each term in the sum is differentiable on U, then so is the sum.

theorem complex.has_sum_deriv_of_summable_norm {E : Type u_1} {ι : Type u_2} [normed_add_comm_group E] [normed_space E] [complete_space E] {U : set } {z : } {F : ι E} {u : ι } (hu : summable u) (hf : (i : ι), differentiable_on (F i) U) (hU : is_open U) (hF_le : (i : ι) (w : ), w U F i w u i) (hz : z U) :
has_sum (λ (i : ι), deriv (F i) z) (deriv (λ (w : ), ∑' (i : ι), F i w) z)

If the terms in the sum ∑' (i : ι), F i are uniformly bounded on U by a summable function, then the sum of deriv F i at a point in U is the derivative of the sum.