Extra lemmas about invertible matrices #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Many of the invertible
lemmas are about *
; this restates them to be about ⬝
.
For lemmas about the matrix inverse in terms of the determinant and adjugate, see matrix.has_inv
in linear_algebra/matrix/nonsingular_inverse.lean
.
A copy of inv_of_mul_self
using ⬝
not *
.
A copy of mul_inv_of_self
using ⬝
not *
.
A copy of inv_of_mul_self_assoc
using ⬝
not *
.
A copy of mul_inv_of_self_assoc
using ⬝
not *
.
A copy of mul_inv_of_mul_self_cancel
using ⬝
not *
.
A copy of mul_mul_inv_of_self_cancel
using ⬝
not *
.
A copy of invertible_mul
using ⬝
not *
.
Equations
- A.invertible_mul B = {inv_of := (⅟ B).mul (⅟ A), inv_of_mul_self := _, mul_inv_of_self := _}
A copy of invertible.mul
using ⬝
not *
.
Equations
- ha.matrix_mul hb = invertible_mul (λ (i i_1 : n), A i i_1) (λ (i k : n), B i k)
A copy of invertible_of_invertible_mul
using ⬝
not *
.
Equations
- a.invertible_of_invertible_mul b = {inv_of := (⅟ (a.mul b)).mul a, inv_of_mul_self := _, mul_inv_of_self := _}
A copy of invertible_of_mul_invertible
using ⬝
not *
.
Equations
- a.invertible_of_mul_invertible b = {inv_of := b.mul (⅟ (a.mul b)), inv_of_mul_self := _, mul_inv_of_self := _}
A copy of invertible.mul_left
using ⬝
not *
.
Equations
- ha.matrix_mul_left b = {to_fun := λ (hb : invertible b), a.invertible_mul b, inv_fun := λ (hab : invertible (a.mul b)), a.invertible_of_invertible_mul b, left_inv := _, right_inv := _}
A copy of invertible.mul_right
using ⬝
not *
.
Equations
- invertible.matrix_mul_right a ha = {to_fun := λ (hb : invertible a), a.invertible_mul b, inv_fun := λ (hab : invertible (a.mul b)), a.invertible_of_mul_invertible b, left_inv := _, right_inv := _}