Localization of the opposite category #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
If a functor L : C ⥤ D
is a localization functor for W : morphism_property C
, it
is shown in this file that L.op : Cᵒᵖ ⥤ Dᵒᵖ
is also a localization functor.
def
category_theory.localization.strict_universal_property_fixed_target.op
{C : Type u_1}
{D : Type u_2}
[category_theory.category C]
[category_theory.category D]
{L : C ⥤ D}
{W : category_theory.morphism_property C}
{E : Type u_5}
[category_theory.category E]
(h : category_theory.localization.strict_universal_property_fixed_target L W Eᵒᵖ) :
If L : C ⥤ D
satisfies the universal property of the localisation
for W : morphism_property C
, then L.op
also does.
@[protected, instance]
def
category_theory.localization.is_localization_op
{C : Type u_1}
[category_theory.category C]
{W : category_theory.morphism_property C} :
W.Q.op.is_localization W.op
@[protected, instance]
def
category_theory.functor.is_localization.op
{C : Type u_1}
{D : Type u_2}
[category_theory.category C]
[category_theory.category D]
{L : C ⥤ D}
{W : category_theory.morphism_property C}
[h : L.is_localization W] :
L.op.is_localization W.op