The exponential map from selfadjoint to unitary #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4. In this file, we establish various propreties related to the map
λ a, exp ℂ A (I • a)
between the subtypesself_adjoint A
andunitary A
.
TODO #
@[simp]
theorem
self_adjoint.exp_unitary_coe
{A : Type u_1}
[normed_ring A]
[normed_algebra ℂ A]
[star_ring A]
[has_continuous_star A]
[complete_space A]
[star_module ℂ A]
(a : ↥(self_adjoint A)) :
noncomputable
def
self_adjoint.exp_unitary
{A : Type u_1}
[normed_ring A]
[normed_algebra ℂ A]
[star_ring A]
[has_continuous_star A]
[complete_space A]
[star_module ℂ A]
(a : ↥(self_adjoint A)) :
The map from the selfadjoint real subspace to the unitary group. This map only makes sense over ℂ.
theorem
commute.exp_unitary_add
{A : Type u_1}
[normed_ring A]
[normed_algebra ℂ A]
[star_ring A]
[has_continuous_star A]
[complete_space A]
[star_module ℂ A]
{a b : ↥(self_adjoint A)}
(h : commute ↑a ↑b) :
theorem
commute.exp_unitary
{A : Type u_1}
[normed_ring A]
[normed_algebra ℂ A]
[star_ring A]
[has_continuous_star A]
[complete_space A]
[star_module ℂ A]
{a b : ↥(self_adjoint A)}
(h : commute ↑a ↑b) :