Sorgenfrey line #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file we define sorgenfrey_line
(notation: ℝₗ
) to be the Sorgenfrey line. It is the real
line with the topology space structure generated by half-open intervals set.Ico a b
.
We prove that this line is a completely normal Hausdorff space but its product with itself is not a
normal space. In particular, this implies that the topology on ℝₗ
is neither metrizable, nor
second countable.
Notations #
ℝₗ
: Sorgenfrey line.
TODO #
Prove that the Sorgenfrey line is a paracompact space.
The Sorgenfrey line. It is the real line with the topology space structure generated by
half-open intervals set.Ico a b
.
Equations
Instances for counterexample.sorgenfrey_line
- counterexample.sorgenfrey_line.conditionally_complete_linear_order
- counterexample.sorgenfrey_line.linear_ordered_field
- counterexample.sorgenfrey_line.archimedean
- counterexample.sorgenfrey_line.topological_space
- counterexample.sorgenfrey_line.order_closed_topology
- counterexample.sorgenfrey_line.has_continuous_add
- counterexample.sorgenfrey_line.totally_disconnected_space
- counterexample.sorgenfrey_line.topological_space.first_countable_topology
- counterexample.sorgenfrey_line.t5_space
- counterexample.sorgenfrey_line.topological_space.separable_space
Ring homomorphism between the Sorgenfrey line and the standard real line.
Sorgenfrey line is a completely normal Hausdorff topological space.
Any subset of an antidiagonal {(x, y) : ℝₗ × ℝₗ| x + y = c}
is a closed set.
The product of the Sorgenfrey line and itself is not a normal topological space.
Topology on the Sorgenfrey line is not metrizable.
Topology on the Sorgenfrey line is not second countable.