Function field of integral schemes #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We define the function field of an irreducible scheme as the stalk of the generic point. This is a field when the scheme is integral.
Main definition #
algebraic_geometry.Scheme.function_field
: The function field of an integral scheme.algebraic_geometry.germ_to_function_field
: The canonical map from a component into the function field. This map is injective.
@[reducible]
noncomputable
def
algebraic_geometry.Scheme.function_field
(X : algebraic_geometry.Scheme)
[irreducible_space ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)] :
The function field of an irreducible scheme is the local ring at its generic point. Despite the name, this is a field only when the scheme is integral.
@[reducible]
noncomputable
def
algebraic_geometry.Scheme.germ_to_function_field
(X : algebraic_geometry.Scheme)
[irreducible_space ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)]
(U : topological_space.opens ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier))
[h : nonempty ↥U] :
The restriction map from a component to the function field.
@[protected, instance]
noncomputable
def
algebraic_geometry.Scheme.function_field.algebra
(X : algebraic_geometry.Scheme)
[irreducible_space ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)]
(U : topological_space.opens ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier))
[nonempty ↥U] :
Equations
@[protected, instance]
noncomputable
def
algebraic_geometry.Scheme.function_field.field
(X : algebraic_geometry.Scheme)
[algebraic_geometry.is_integral X] :
field ↥(X.function_field)
theorem
algebraic_geometry.generic_point_eq_of_is_open_immersion
{X Y : algebraic_geometry.Scheme}
(f : X ⟶ Y)
[H : algebraic_geometry.is_open_immersion f]
[hX : irreducible_space ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)]
[irreducible_space ↥(Y.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)] :
@[protected, instance]
@[protected, instance]
def
algebraic_geometry.function_field_is_scalar_tower
(X : algebraic_geometry.Scheme)
[irreducible_space ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)]
(U : topological_space.opens ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier))
(x : ↥U)
[nonempty ↥U] :
@[protected, instance]
@[simp]
@[protected, instance]
@[protected, instance]
theorem
algebraic_geometry.is_affine_open.prime_ideal_of_generic_point
{X : algebraic_geometry.Scheme}
[algebraic_geometry.is_integral X]
{U : topological_space.opens ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)}
(hU : algebraic_geometry.is_affine_open U)
[h : nonempty ↥U] :
hU.prime_ideal_of ⟨generic_point ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier) _, _⟩ = generic_point ↥((algebraic_geometry.Scheme.Spec.obj (opposite.op (X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.presheaf.obj (opposite.op U)))).to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)
theorem
algebraic_geometry.function_field_is_fraction_ring_of_is_affine_open
(X : algebraic_geometry.Scheme)
[algebraic_geometry.is_integral X]
(U : topological_space.opens ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier))
(hU : algebraic_geometry.is_affine_open U)
[hU' : nonempty ↥U] :
@[protected, instance]
@[protected, instance]