Limit properties relating to the (co)yoneda embedding. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We calculate the colimit of Y ↦ (X ⟶ Y)
, which is just punit
.
(This is used in characterising cofinal functors.)
We also show the (co)yoneda embeddings preserve limits and jointly reflect them.
The colimit cocone over coyoneda.obj X
, with cocone point punit
.
Equations
- category_theory.coyoneda.colimit_cocone X = {X := punit, ι := {app := λ (X_1 : C), id (λ (ᾰ : (category_theory.coyoneda.obj X).obj X_1), id (λ (X : Cᵒᵖ) (X_1 : C) (ᾰ : opposite.unop X ⟶ X_1), punit.star) X X_1 ᾰ), naturality' := _}}
The proposed colimit cocone over coyoneda.obj X
is a colimit cocone.
Equations
- category_theory.coyoneda.colimit_cocone_is_colimit X = {desc := λ (s : category_theory.limits.cocone (category_theory.coyoneda.obj X)) (x : (category_theory.coyoneda.colimit_cocone X).X), s.ι.app (opposite.unop X) (𝟙 (opposite.unop X)), fac' := _, uniq' := _}
The colimit of coyoneda.obj X
is isomorphic to punit
.
The yoneda embedding yoneda.obj X : Cᵒᵖ ⥤ Type v
for X : C
preserves limits.
Equations
- category_theory.yoneda_preserves_limits X = {preserves_limits_of_shape := λ (J : Type v) (𝒥 : category_theory.category J), {preserves_limit := λ (K : J ⥤ Cᵒᵖ), {preserves := λ (c : category_theory.limits.cone K) (t : category_theory.limits.is_limit c), {lift := λ (s : category_theory.limits.cone (K ⋙ category_theory.yoneda.obj X)) (x : s.X), (t.lift {X := opposite.op X, π := {app := λ (j : J), quiver.hom.op (s.π.app j x), naturality' := _}}).unop, fac' := _, uniq' := _}}}}
The coyoneda embedding coyoneda.obj X : C ⥤ Type v
for X : Cᵒᵖ
preserves limits.
Equations
- category_theory.coyoneda_preserves_limits X = {preserves_limits_of_shape := λ (J : Type v) (𝒥 : category_theory.category J), {preserves_limit := λ (K : J ⥤ C), {preserves := λ (c : category_theory.limits.cone K) (t : category_theory.limits.is_limit c), {lift := λ (s : category_theory.limits.cone (K ⋙ category_theory.coyoneda.obj X)) (x : s.X), t.lift {X := opposite.unop X, π := {app := λ (j : J), s.π.app j x, naturality' := _}}, fac' := _, uniq' := _}}}}
The yoneda embeddings jointly reflect limits.
Equations
- category_theory.yoneda_jointly_reflects_limits J K c t = let s' : Π (s : category_theory.limits.cone K), category_theory.limits.cone (K ⋙ category_theory.yoneda.obj (opposite.unop s.X)) := λ (s : category_theory.limits.cone K), {X := punit, π := {app := λ (j : J) (_x : ((category_theory.functor.const J).obj punit).obj j), (s.π.app j).unop, naturality' := _}} in {lift := λ (s : category_theory.limits.cone K), quiver.hom.op ((t (opposite.unop s.X)).lift (s' s) punit.star), fac' := _, uniq' := _}
The coyoneda embeddings jointly reflect limits.
Equations
- category_theory.coyoneda_jointly_reflects_limits J K c t = let s' : Π (s : category_theory.limits.cone K), category_theory.limits.cone (K ⋙ category_theory.coyoneda.obj (opposite.op s.X)) := λ (s : category_theory.limits.cone K), {X := punit, π := {app := λ (j : J) (_x : ((category_theory.functor.const J).obj punit).obj j), s.π.app j, naturality' := _}} in {lift := λ (s : category_theory.limits.cone K), (t (opposite.op s.X)).lift (s' s) punit.star, fac' := _, uniq' := _}