Evaluation of specific improper integrals #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file contains some integrability results, and evaluations of integrals, over ℝ
or over
half-infinite intervals in ℝ
.
See also #
analysis.special_functions.integrals
-- integrals over finite intervalsanalysis.special_functions.gaussian
-- integral ofexp (-x ^ 2)
analysis.special_functions.japanese_bracket
-- integrability of(1+‖x‖)^(-r)
.
theorem
integrable_on_Ioi_rpow_of_lt
{a : ℝ}
(ha : a < -1)
{c : ℝ}
(hc : 0 < c) :
measure_theory.integrable_on (λ (t : ℝ), t ^ a) (set.Ioi c) measure_theory.measure_space.volume
If 0 < c
, then (λ t : ℝ, t ^ a)
is integrable on (c, ∞)
for all a < -1
.
theorem
integrable_on_Ioi_cpow_of_lt
{a : ℂ}
(ha : a.re < -1)
{c : ℝ}
(hc : 0 < c) :
measure_theory.integrable_on (λ (t : ℝ), ↑t ^ a) (set.Ioi c) measure_theory.measure_space.volume