Presheafed spaces #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Introduces the category of topological spaces equipped with a presheaf (taking values in an
arbitrary target category C
.)
We further describe how to apply functors and natural transformations to the values of the presheaves.
- carrier : Top
- presheaf : Top.presheaf C self.carrier
A PresheafedSpace C
is a topological space equipped with a presheaf of C
s.
Instances for algebraic_geometry.PresheafedSpace
- algebraic_geometry.PresheafedSpace.has_sizeof_inst
- algebraic_geometry.PresheafedSpace.coe_carrier
- algebraic_geometry.PresheafedSpace.inhabited
- algebraic_geometry.PresheafedSpace.category_of_PresheafedSpaces
- algebraic_geometry.PresheafedSpace.category_theory.limits.has_colimits_of_shape
- algebraic_geometry.PresheafedSpace.category_theory.limits.has_colimits
Equations
Equations
- X.topological_space = X.carrier.str
The constant presheaf on X
with value Z
.
A morphism between presheafed spaces X
and Y
consists of a continuous map
f
between the underlying topological spaces, and a (notice contravariant!) map
from the presheaf on Y
to the pushforward of the presheaf on X
via f
.
Instances for algebraic_geometry.PresheafedSpace.hom
- algebraic_geometry.PresheafedSpace.hom.has_sizeof_inst
- algebraic_geometry.PresheafedSpace.hom_inhabited
The identity morphism of a PresheafedSpace
.
Equations
- X.hom_inhabited = {default := X.id}
Composition of morphisms of PresheafedSpace
s.
The category of PresheafedSpaces. Morphisms are pairs, a continuous map and a presheaf map from the presheaf on the target to the pushforward of the presheaf on the source.
Equations
- algebraic_geometry.PresheafedSpace.category_of_PresheafedSpaces C = {to_category_struct := {to_quiver := {hom := algebraic_geometry.PresheafedSpace.hom _inst_1}, id := algebraic_geometry.PresheafedSpace.id _inst_1, comp := λ (X Y Z : algebraic_geometry.PresheafedSpace C) (f : X ⟶ Y) (g : Y ⟶ Z), algebraic_geometry.PresheafedSpace.comp f g}, id_comp' := _, comp_id' := _, assoc' := _}
Sometimes rewriting with comp_c_app
doesn't work because of dependent type issues.
In that case, erw comp_c_app_assoc
might make progress.
The lemma comp_c_app_assoc
is also better suited for rewrites in the opposite direction.
The forgetful functor from PresheafedSpace
to Top
.
Equations
- algebraic_geometry.PresheafedSpace.forget C = {obj := λ (X : algebraic_geometry.PresheafedSpace C), ↑X, map := λ (X Y : algebraic_geometry.PresheafedSpace C) (f : X ⟶ Y), f.base, map_id' := _, map_comp' := _}
Instances for algebraic_geometry.PresheafedSpace.forget
- algebraic_geometry.PresheafedSpace.forget.category_theory.limits.preserves_colimits_of_shape
- algebraic_geometry.PresheafedSpace.forget_preserves_colimits
- algebraic_geometry.PresheafedSpace.is_open_immersion.forget_preserves_limits_of_left
- algebraic_geometry.PresheafedSpace.is_open_immersion.forget_preserves_limits_of_right
An isomorphism of PresheafedSpaces is a homeomorphism of the underlying space, and a natural transformation between the sheaves.
Equations
- algebraic_geometry.PresheafedSpace.iso_of_components H α = {hom := {base := H.hom, c := α.inv}, inv := {base := H.inv, c := Top.presheaf.to_pushforward_of_iso H α.hom}, hom_inv_id' := _, inv_hom_id' := _}
Isomorphic PresheafedSpaces have natural isomorphic presheaves.
Equations
- algebraic_geometry.PresheafedSpace.sheaf_iso_of_iso H = {hom := H.hom.c, inv := Top.presheaf.pushforward_to_of_iso ((algebraic_geometry.PresheafedSpace.forget C).map_iso H).symm H.inv.c, hom_inv_id' := _, inv_hom_id' := _}
This could be used in conjunction with category_theory.nat_iso.is_iso_of_is_iso_app
.
The restriction of a presheafed space along an open embedding into the space.
The map from the restriction of a presheafed space.
Equations
- X.of_restrict h = {base := f, c := {app := λ (V : (topological_space.opens ↥(X.carrier))ᵒᵖ), X.presheaf.map (_.adjunction.counit.app (opposite.unop V)).op, naturality' := _}}
Instances for algebraic_geometry.PresheafedSpace.of_restrict
The map to the restriction of a presheafed space along the canonical inclusion from the top subspace.
Equations
The isomorphism from the restriction to the top subspace.
Equations
- X.restrict_top_iso = {hom := X.of_restrict _, inv := X.to_restrict_top, hom_inv_id' := _, inv_hom_id' := _}
The global sections, notated Gamma.
Equations
- algebraic_geometry.PresheafedSpace.Γ = {obj := λ (X : (algebraic_geometry.PresheafedSpace C)ᵒᵖ), (opposite.unop X).presheaf.obj (opposite.op ⊤), map := λ (X Y : (algebraic_geometry.PresheafedSpace C)ᵒᵖ) (f : X ⟶ Y), f.unop.c.app (opposite.op ⊤), map_id' := _, map_comp' := _}
We can apply a functor F : C ⥤ D
to the values of the presheaf in any PresheafedSpace C
,
giving a functor PresheafedSpace C ⥤ PresheafedSpace D
A natural transformation induces a natural transformation between the map_presheaf
functors.
Equations
- category_theory.nat_trans.on_presheaf α = {app := λ (X : algebraic_geometry.PresheafedSpace C), {base := 𝟙 ↑(G.map_presheaf.obj X), c := category_theory.whisker_left X.presheaf α ≫ category_theory.eq_to_hom _}, naturality' := _}