mathlib3 documentation

ring_theory.mv_polynomial.homogeneous

Homogeneous polynomials #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

A multivariate polynomial φ is homogeneous of degree n if all monomials occuring in φ have degree n.

Main definitions/lemmas #

def mv_polynomial.is_homogeneous {σ : Type u_1} {R : Type u_3} [comm_semiring R] (φ : mv_polynomial σ R) (n : ) :
Prop

A multivariate polynomial φ is homogeneous of degree n if all monomials occuring in φ have degree n.

Equations
def mv_polynomial.homogeneous_submodule (σ : Type u_1) (R : Type u_3) [comm_semiring R] (n : ) :

The submodule of homogeneous mv_polynomials of degree n.

Equations
Instances for mv_polynomial.homogeneous_submodule

While equal, the former has a convenient definitional reduction.

theorem mv_polynomial.is_homogeneous_monomial {σ : Type u_1} {R : Type u_3} [comm_semiring R] (d : σ →₀ ) (r : R) (n : ) (hn : d.support.sum (λ (i : σ), d i) = n) :
theorem mv_polynomial.is_homogeneous_zero (σ : Type u_1) (R : Type u_3) [comm_semiring R] (n : ) :
theorem mv_polynomial.is_homogeneous_X {σ : Type u_1} (R : Type u_3) [comm_semiring R] (i : σ) :
theorem mv_polynomial.is_homogeneous.coeff_eq_zero {σ : Type u_1} {R : Type u_3} [comm_semiring R] {φ : mv_polynomial σ R} {n : } (hφ : φ.is_homogeneous n) (d : σ →₀ ) (hd : d.support.sum (λ (i : σ), d i) n) :
theorem mv_polynomial.is_homogeneous.inj_right {σ : Type u_1} {R : Type u_3} [comm_semiring R] {φ : mv_polynomial σ R} {m n : } (hm : φ.is_homogeneous m) (hn : φ.is_homogeneous n) (hφ : φ 0) :
m = n
theorem mv_polynomial.is_homogeneous.add {σ : Type u_1} {R : Type u_3} [comm_semiring R] {φ ψ : mv_polynomial σ R} {n : } (hφ : φ.is_homogeneous n) (hψ : ψ.is_homogeneous n) :
+ ψ).is_homogeneous n
theorem mv_polynomial.is_homogeneous.sum {σ : Type u_1} {R : Type u_3} [comm_semiring R] {ι : Type u_2} (s : finset ι) (φ : ι mv_polynomial σ R) (n : ) (h : (i : ι), i s (φ i).is_homogeneous n) :
(s.sum (λ (i : ι), φ i)).is_homogeneous n
theorem mv_polynomial.is_homogeneous.mul {σ : Type u_1} {R : Type u_3} [comm_semiring R] {φ ψ : mv_polynomial σ R} {m n : } (hφ : φ.is_homogeneous m) (hψ : ψ.is_homogeneous n) :
* ψ).is_homogeneous (m + n)
theorem mv_polynomial.is_homogeneous.prod {σ : Type u_1} {R : Type u_3} [comm_semiring R] {ι : Type u_2} (s : finset ι) (φ : ι mv_polynomial σ R) (n : ι ) (h : (i : ι), i s (φ i).is_homogeneous (n i)) :
(s.prod (λ (i : ι), φ i)).is_homogeneous (s.sum (λ (i : ι), n i))
theorem mv_polynomial.is_homogeneous.total_degree {σ : Type u_1} {R : Type u_3} [comm_semiring R] {φ : mv_polynomial σ R} {n : } (hφ : φ.is_homogeneous n) (h : φ 0) :
@[protected, instance]

The homogeneous submodules form a graded ring. This instance is used by direct_sum.comm_semiring and direct_sum.algebra.

noncomputable def mv_polynomial.homogeneous_component {σ : Type u_1} {R : Type u_3} [comm_semiring R] (n : ) :

homogeneous_component n φ is the part of φ that is homogeneous of degree n. See sum_homogeneous_component for the statement that φ is equal to the sum of all its homogeneous components.

Equations
theorem mv_polynomial.coeff_homogeneous_component {σ : Type u_1} {R : Type u_3} [comm_semiring R] (n : ) (φ : mv_polynomial σ R) (d : σ →₀ ) :
theorem mv_polynomial.homogeneous_component_apply {σ : Type u_1} {R : Type u_3} [comm_semiring R] (n : ) (φ : mv_polynomial σ R) :
theorem mv_polynomial.homogeneous_component_eq_zero' {σ : Type u_1} {R : Type u_3} [comm_semiring R] (n : ) (φ : mv_polynomial σ R) (h : (d : σ →₀ ), d φ.support d.support.sum (λ (i : σ), d i) n) :