Adic valuations on Dedekind domains #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4. Given a Dedekind domain
R
of Krull dimension 1 and a maximal idealv
ofR
, we define thev
-adic valuation onR
and its extension to the field of fractionsK
ofR
. We prove several properties of this valuation, including the existence of uniformizers.
We define the completion of K
with respect to the v
-adic valuation, denoted
v.adic_completion
,and its ring of integers, denoted v.adic_completion_integers
.
Main definitions #
is_dedekind_domain.height_one_spectrum.int_valuation v
is thev
-adic valuation onR
.is_dedekind_domain.height_one_spectrum.valuation v
is thev
-adic valuation onK
.is_dedekind_domain.height_one_spectrum.adic_completion v
is the completion ofK
with respect to itsv
-adic valuation.is_dedekind_domain.height_one_spectrum.adic_completion_integers v
is the ring of integers ofv.adic_completion
.
Main results #
is_dedekind_domain.height_one_spectrum.int_valuation_le_one
: Thev
-adic valuation onR
is bounded above by 1.is_dedekind_domain.height_one_spectrum.int_valuation_lt_one_iff_dvd
: Thev
-adic valuation ofr ∈ R
is less than 1 if and only ifv
divides the ideal(r)
.is_dedekind_domain.height_one_spectrum.int_valuation_le_pow_iff_dvd
: Thev
-adic valuation ofr ∈ R
is less than or equal tomultiplicative.of_add (-n)
if and only ifvⁿ
divides the ideal(r)
.is_dedekind_domain.height_one_spectrum.int_valuation_exists_uniformizer
: There existsπ ∈ R
withv
-adic valuationmultiplicative.of_add (-1)
.is_dedekind_domain.height_one_spectrum.valuation_of_mk'
: Thev
-adic valuation ofr/s ∈ K
is the valuation ofr
divided by the valuation ofs
.is_dedekind_domain.height_one_spectrum.valuation_of_algebra_map
: Thev
-adic valuation onK
extends thev
-adic valuation onR
.is_dedekind_domain.height_one_spectrum.valuation_exists_uniformizer
: There existsπ ∈ K
withv
-adic valuationmultiplicative.of_add (-1)
.
Implementation notes #
We are only interested in Dedekind domains with Krull dimension 1.
References #
- [G. J. Janusz, Algebraic Number Fields][janusz1996]
- J.W.S. Cassels, A. Frölich, Algebraic Number Theory
- J. Neukirch, Algebraic Number Theory
Tags #
dedekind domain, dedekind ring, adic valuation
Adic valuations on the Dedekind domain R #
The additive v
-adic valuation of r ∈ R
is the exponent of v
in the factorization of the
ideal (r)
, if r
is nonzero, or infinity, if r = 0
. int_valuation_def
is the corresponding
multiplicative valuation.
Equations
- v.int_valuation_def r = ite (r = 0) 0 ↑(⇑multiplicative.of_add (-↑((associates.mk v.as_ideal).count (associates.mk (ideal.span {r})).factors)))
Nonzero elements have nonzero adic valuation.
Nonzero divisors have nonzero valuation.
Nonzero divisors have valuation greater than zero.
The v
-adic valuation on R
is bounded above by 1.
The v
-adic valuation of r ∈ R
is less than 1 if and only if v
divides the ideal (r)
.
The v
-adic valuation of r ∈ R
is less than multiplicative.of_add (-n)
if and only if
vⁿ
divides the ideal (r)
.
The v
-adic valuation of 0 : R
equals 0.
The v
-adic valuation of 1 : R
equals 1.
The v
-adic valuation of a product equals the product of the valuations.
The v
-adic valuation of a sum is bounded above by the maximum of the valuations.
The v
-adic valuation on R
.
Equations
- v.int_valuation = {to_monoid_with_zero_hom := {to_fun := v.int_valuation_def, map_zero' := _, map_one' := _, map_mul' := _}, map_add_le_max' := _}
There exists π ∈ R
with v
-adic valuation multiplicative.of_add (-1)
.
Adic valuations on the field of fractions K
#
The v
-adic valuation of x ∈ K
is the valuation of r
divided by the valuation of s
,
where r
and s
are chosen so that x = r/s
.
Equations
The v
-adic valuation of r/s ∈ K
is the valuation of r
divided by the valuation of s
.
The v
-adic valuation on K
extends the v
-adic valuation on R
.
The v
-adic valuation on R
is bounded above by 1.
The v
-adic valuation of r ∈ R
is less than 1 if and only if v
divides the ideal (r)
.
There exists π ∈ K
with v
-adic valuation multiplicative.of_add (-1)
.
Uniformizers are nonzero.
Completions with respect to adic valuations #
Given a Dedekind domain R
with field of fractions K
and a maximal ideal v
of R
, we define
the completion of K
with respect to its v
-adic valuation, denoted v.adic_completion
, and its
ring of integers, denoted v.adic_completion_integers
.
K
as a valued field with the v
-adic valuation.
Equations
The completion of K
with respect to its v
-adic valuation.
Instances for is_dedekind_domain.height_one_spectrum.adic_completion
- is_dedekind_domain.height_one_spectrum.adic_completion.field
- is_dedekind_domain.height_one_spectrum.adic_completion.inhabited
- is_dedekind_domain.height_one_spectrum.valued_adic_completion
- is_dedekind_domain.height_one_spectrum.adic_completion_complete_space
- is_dedekind_domain.height_one_spectrum.adic_completion.has_lift_t
- is_dedekind_domain.height_one_spectrum.adic_completion.algebra'
- is_dedekind_domain.height_one_spectrum.adic_completion.algebra
- is_dedekind_domain.height_one_spectrum.adic_completion.is_scalar_tower
- is_dedekind_domain.height_one_spectrum.adic_completion.is_scalar_tower'
Equations
The ring of integers of adic_completion
.
Equations
Instances for ↥is_dedekind_domain.height_one_spectrum.adic_completion_integers
- is_dedekind_domain.height_one_spectrum.adic_completion_integers.inhabited
- is_dedekind_domain.height_one_spectrum.adic_completion_integers.algebra
- is_dedekind_domain.height_one_spectrum.adic_completion_integers.no_zero_smul_divisors
- is_dedekind_domain.height_one_spectrum.adic_completion.is_scalar_tower'
Equations
Equations
- is_dedekind_domain.height_one_spectrum.adic_completion_integers.algebra R K v = {to_has_smul := {smul := λ (r : R) (x : ↥(is_dedekind_domain.height_one_spectrum.adic_completion_integers K v)), ⟨r • ↑x, _⟩}, to_ring_hom := {to_fun := λ (r : R), ⟨↑(⇑(algebra_map R K) r), _⟩, map_one' := _, map_mul' := _, map_zero' := _, map_add' := _}, commutes' := _, smul_def' := _}