Adic valuations on Dedekind domains #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4. Given a Dedekind domain
Rof Krull dimension 1 and a maximal idealvofR, we define thev-adic valuation onRand its extension to the field of fractionsKofR. We prove several properties of this valuation, including the existence of uniformizers.
We define the completion of K with respect to the v-adic valuation, denoted
v.adic_completion,and its ring of integers, denoted v.adic_completion_integers.
Main definitions #
is_dedekind_domain.height_one_spectrum.int_valuation vis thev-adic valuation onR.is_dedekind_domain.height_one_spectrum.valuation vis thev-adic valuation onK.is_dedekind_domain.height_one_spectrum.adic_completion vis the completion ofKwith respect to itsv-adic valuation.is_dedekind_domain.height_one_spectrum.adic_completion_integers vis the ring of integers ofv.adic_completion.
Main results #
is_dedekind_domain.height_one_spectrum.int_valuation_le_one: Thev-adic valuation onRis bounded above by 1.is_dedekind_domain.height_one_spectrum.int_valuation_lt_one_iff_dvd: Thev-adic valuation ofr ∈ Ris less than 1 if and only ifvdivides the ideal(r).is_dedekind_domain.height_one_spectrum.int_valuation_le_pow_iff_dvd: Thev-adic valuation ofr ∈ Ris less than or equal tomultiplicative.of_add (-n)if and only ifvⁿdivides the ideal(r).is_dedekind_domain.height_one_spectrum.int_valuation_exists_uniformizer: There existsπ ∈ Rwithv-adic valuationmultiplicative.of_add (-1).is_dedekind_domain.height_one_spectrum.valuation_of_mk': Thev-adic valuation ofr/s ∈ Kis the valuation ofrdivided by the valuation ofs.is_dedekind_domain.height_one_spectrum.valuation_of_algebra_map: Thev-adic valuation onKextends thev-adic valuation onR.is_dedekind_domain.height_one_spectrum.valuation_exists_uniformizer: There existsπ ∈ Kwithv-adic valuationmultiplicative.of_add (-1).
Implementation notes #
We are only interested in Dedekind domains with Krull dimension 1.
References #
- [G. J. Janusz, Algebraic Number Fields][janusz1996]
- J.W.S. Cassels, A. Frölich, Algebraic Number Theory
- J. Neukirch, Algebraic Number Theory
Tags #
dedekind domain, dedekind ring, adic valuation
Adic valuations on the Dedekind domain R #
The additive v-adic valuation of r ∈ R is the exponent of v in the factorization of the
ideal (r), if r is nonzero, or infinity, if r = 0. int_valuation_def is the corresponding
multiplicative valuation.
Equations
- v.int_valuation_def r = ite (r = 0) 0 ↑(⇑multiplicative.of_add (-↑((associates.mk v.as_ideal).count (associates.mk (ideal.span {r})).factors)))
Nonzero elements have nonzero adic valuation.
Nonzero divisors have nonzero valuation.
Nonzero divisors have valuation greater than zero.
The v-adic valuation on R is bounded above by 1.
The v-adic valuation of r ∈ R is less than 1 if and only if v divides the ideal (r).
The v-adic valuation of r ∈ R is less than multiplicative.of_add (-n) if and only if
vⁿ divides the ideal (r).
The v-adic valuation of 0 : R equals 0.
The v-adic valuation of 1 : R equals 1.
The v-adic valuation of a product equals the product of the valuations.
The v-adic valuation of a sum is bounded above by the maximum of the valuations.
The v-adic valuation on R.
Equations
- v.int_valuation = {to_monoid_with_zero_hom := {to_fun := v.int_valuation_def, map_zero' := _, map_one' := _, map_mul' := _}, map_add_le_max' := _}
There exists π ∈ R with v-adic valuation multiplicative.of_add (-1).
Adic valuations on the field of fractions K #
The v-adic valuation of x ∈ K is the valuation of r divided by the valuation of s,
where r and s are chosen so that x = r/s.
Equations
The v-adic valuation of r/s ∈ K is the valuation of r divided by the valuation of s.
The v-adic valuation on K extends the v-adic valuation on R.
The v-adic valuation on R is bounded above by 1.
The v-adic valuation of r ∈ R is less than 1 if and only if v divides the ideal (r).
There exists π ∈ K with v-adic valuation multiplicative.of_add (-1).
Uniformizers are nonzero.
Completions with respect to adic valuations #
Given a Dedekind domain R with field of fractions K and a maximal ideal v of R, we define
the completion of K with respect to its v-adic valuation, denoted v.adic_completion, and its
ring of integers, denoted v.adic_completion_integers.
K as a valued field with the v-adic valuation.
Equations
The completion of K with respect to its v-adic valuation.
Instances for is_dedekind_domain.height_one_spectrum.adic_completion
- is_dedekind_domain.height_one_spectrum.adic_completion.field
- is_dedekind_domain.height_one_spectrum.adic_completion.inhabited
- is_dedekind_domain.height_one_spectrum.valued_adic_completion
- is_dedekind_domain.height_one_spectrum.adic_completion_complete_space
- is_dedekind_domain.height_one_spectrum.adic_completion.has_lift_t
- is_dedekind_domain.height_one_spectrum.adic_completion.algebra'
- is_dedekind_domain.height_one_spectrum.adic_completion.algebra
- is_dedekind_domain.height_one_spectrum.adic_completion.is_scalar_tower
- is_dedekind_domain.height_one_spectrum.adic_completion.is_scalar_tower'
Equations
The ring of integers of adic_completion.
Equations
Instances for ↥is_dedekind_domain.height_one_spectrum.adic_completion_integers
- is_dedekind_domain.height_one_spectrum.adic_completion_integers.inhabited
- is_dedekind_domain.height_one_spectrum.adic_completion_integers.algebra
- is_dedekind_domain.height_one_spectrum.adic_completion_integers.no_zero_smul_divisors
- is_dedekind_domain.height_one_spectrum.adic_completion.is_scalar_tower'
Equations
Equations
- is_dedekind_domain.height_one_spectrum.adic_completion_integers.algebra R K v = {to_has_smul := {smul := λ (r : R) (x : ↥(is_dedekind_domain.height_one_spectrum.adic_completion_integers K v)), ⟨r • ↑x, _⟩}, to_ring_hom := {to_fun := λ (r : R), ⟨↑(⇑(algebra_map R K) r), _⟩, map_one' := _, map_mul' := _, map_zero' := _, map_add' := _}, commutes' := _, smul_def' := _}