S
-integers and S
-units of fraction fields of Dedekind domains #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Let K
be the field of fractions of a Dedekind domain R
, and let S
be a set of prime ideals in
the height one spectrum of R
. An S
-integer of K
is defined to have v
-adic valuation at most
one for all primes ideals v
away from S
, whereas an S
-unit of Kˣ
is defined to have v
-adic
valuation exactly one for all prime ideals v
away from S
.
This file defines the subalgebra of S
-integers of K
and the subgroup of S
-units of Kˣ
, where
K
can be specialised to the case of a number field or a function field separately.
Main definitions #
set.integer
:S
-integers.set.unit
:S
-units.- TODO: localised notation for
S
-integers.
Main statements #
set.unit_equiv_units_integer
:S
-units are units ofS
-integers.- TODO: proof that
S
-units is the kernel of a map to a product. - TODO: proof that
∅
-integers is the usual ring of integers. - TODO: finite generation of
S
-units and Dirichlet'sS
-unit theorem.
References #
- D Marcus, Number Fields
- J W S Cassels, A Frölich, Algebraic Number Theory
- J Neukirch, Algebraic Number Theory
Tags #
S integer, S-integer, S unit, S-unit
S
-integers #
The R
-subalgebra of S
-integers of K
.
Equations
- S.integer K = {carrier := ((⨅ (v : is_dedekind_domain.height_one_spectrum R) (H : v ∉ S), v.valuation.valuation_subring.to_subring).copy {x : K | ∀ (v : is_dedekind_domain.height_one_spectrum R), v ∉ S → ⇑(v.valuation) x ≤ 1} _).carrier, mul_mem' := _, one_mem' := _, add_mem' := _, zero_mem' := _, algebra_map_mem' := _}
S
-units #
The subgroup of S
-units of Kˣ
.
Equations
- S.unit K = (⨅ (v : is_dedekind_domain.height_one_spectrum R) (H : v ∉ S), v.valuation.valuation_subring.unit_group).copy {x : Kˣ | ∀ (v : is_dedekind_domain.height_one_spectrum R), v ∉ S → ⇑(v.valuation) ↑x = 1} _
The group of S
-units is the group of units of the ring of S
-integers.