Presheaves in C
have limits and colimits when C
does. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
@[protected, instance]
def
Top.presheaf.category_theory.limits.has_limits
{C : Type u}
[category_theory.category C]
[category_theory.limits.has_limits C]
(X : Top) :
@[protected, instance]
@[protected, instance]
noncomputable
def
Top.sheaf.forget.category_theory.creates_limits
{C : Type u}
[category_theory.category C]
[category_theory.limits.has_limits C]
(X : Top) :
@[protected, instance]
theorem
Top.is_sheaf_of_is_limit
{C : Type u}
[category_theory.category C]
{J : Type v}
[category_theory.small_category J]
[category_theory.limits.has_limits C]
{X : Top}
(F : J ⥤ Top.presheaf C X)
(H : ∀ (j : J), (F.obj j).is_sheaf)
{c : category_theory.limits.cone F}
(hc : category_theory.limits.is_limit c) :
theorem
Top.limit_is_sheaf
{C : Type u}
[category_theory.category C]
{J : Type v}
[category_theory.small_category J]
[category_theory.limits.has_limits C]
{X : Top}
(F : J ⥤ Top.presheaf C X)
(H : ∀ (j : J), (F.obj j).is_sheaf) :