Relation isomorphisms form a group #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
@[protected, instance]
Equations
- rel_iso.group = {mul := λ (f₁ f₂ : r ≃r r), f₂.trans f₁, mul_assoc := _, one := rel_iso.refl r, one_mul := _, mul_one := _, npow := div_inv_monoid.npow._default (rel_iso.refl r) (λ (f₁ f₂ : r ≃r r), f₂.trans f₁) rel_iso.group._proof_4 rel_iso.group._proof_5, npow_zero' := _, npow_succ' := _, inv := rel_iso.symm r, div := div_inv_monoid.div._default (λ (f₁ f₂ : r ≃r r), f₂.trans f₁) rel_iso.group._proof_8 (rel_iso.refl r) rel_iso.group._proof_9 rel_iso.group._proof_10 (div_inv_monoid.npow._default (rel_iso.refl r) (λ (f₁ f₂ : r ≃r r), f₂.trans f₁) rel_iso.group._proof_4 rel_iso.group._proof_5) rel_iso.group._proof_11 rel_iso.group._proof_12 rel_iso.symm, div_eq_mul_inv := _, zpow := div_inv_monoid.zpow._default (λ (f₁ f₂ : r ≃r r), f₂.trans f₁) rel_iso.group._proof_14 (rel_iso.refl r) rel_iso.group._proof_15 rel_iso.group._proof_16 (div_inv_monoid.npow._default (rel_iso.refl r) (λ (f₁ f₂ : r ≃r r), f₂.trans f₁) rel_iso.group._proof_4 rel_iso.group._proof_5) rel_iso.group._proof_17 rel_iso.group._proof_18 rel_iso.symm, zpow_zero' := _, zpow_succ' := _, zpow_neg' := _, mul_left_inv := _}