Monomorphisms in Module R
#
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file shows that an R
-linear map is a monomorphism in the category of R
-modules
if and only if it is injective, and similarly an epimorphism if and only if it is surjective.
theorem
Module.ker_eq_bot_of_mono
{R : Type u}
[ring R]
{X Y : Module R}
(f : X ⟶ Y)
[category_theory.mono f] :
linear_map.ker f = ⊥
theorem
Module.range_eq_top_of_epi
{R : Type u}
[ring R]
{X Y : Module R}
(f : X ⟶ Y)
[category_theory.epi f] :
def
Module.unique_of_epi_zero
{R : Type u}
[ring R]
{M : Type v}
[add_comm_group M]
[module R M]
(X : Module R)
[h : category_theory.epi 0] :
unique M
If the zero morphism is an epi then the codomain is trivial.
Equations
@[protected, instance]
@[protected, instance]