Filtrations #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines filtrations of a measurable space and σ-finite filtrations.
Main definitions #
measure_theory.filtration
: a filtration on a measurable space. That is, a monotone sequence of sub-σ-algebras.measure_theory.sigma_finite_filtration
: a filtrationf
is σ-finite with respect to a measureμ
if for alli
,μ.trim (f.le i)
is σ-finite.measure_theory.filtration.natural
: the smallest filtration that makes a process adapted. That notionadapted
is not defined yet in this file. Seemeasure_theory.adapted
.
Main results #
measure_theory.filtration.complete_lattice
: filtrations are a complete lattice.
Tags #
filtration, stochastic process
A filtration
on a measurable space Ω
with σ-algebra m
is a monotone
sequence of sub-σ-algebras of m
.
Instances for measure_theory.filtration
- measure_theory.filtration.has_sizeof_inst
- measure_theory.filtration.has_coe_to_fun
- measure_theory.filtration.inhabited
- measure_theory.filtration.has_le
- measure_theory.filtration.has_bot
- measure_theory.filtration.has_top
- measure_theory.filtration.has_sup
- measure_theory.filtration.has_inf
- measure_theory.filtration.has_Sup
- measure_theory.filtration.has_Inf
- measure_theory.filtration.complete_lattice
Equations
- measure_theory.filtration.has_coe_to_fun = {coe := λ (f : measure_theory.filtration ι m), f.seq}
The constant filtration which is equal to m
for all i : ι
.
Equations
- measure_theory.filtration.inhabited = {default := measure_theory.filtration.const ι m measure_theory.filtration.inhabited._proof_1}
Equations
- measure_theory.filtration.has_le = {le := λ (f g : measure_theory.filtration ι m), ∀ (i : ι), ⇑f i ≤ ⇑g i}
Equations
- measure_theory.filtration.has_bot = {bot := measure_theory.filtration.const ι ⊥ measure_theory.filtration.has_bot._proof_1}
Equations
- measure_theory.filtration.has_top = {top := measure_theory.filtration.const ι m measure_theory.filtration.has_top._proof_1}
Equations
- measure_theory.filtration.has_Sup = {Sup := λ (s : set (measure_theory.filtration ι m)), {seq := λ (i : ι), has_Sup.Sup ((λ (f : measure_theory.filtration ι m), ⇑f i) '' s), mono' := _, le' := _}}
Equations
- measure_theory.filtration.has_Inf = {Inf := λ (s : set (measure_theory.filtration ι m)), {seq := λ (i : ι), ite s.nonempty (has_Inf.Inf ((λ (f : measure_theory.filtration ι m), ⇑f i) '' s)) m, mono' := _, le' := _}}
Equations
- measure_theory.filtration.complete_lattice = {sup := has_sup.sup measure_theory.filtration.has_sup, le := has_le.le measure_theory.filtration.has_le, lt := lattice.lt._default has_le.le, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_sup_left := _, le_sup_right := _, sup_le := _, inf := has_inf.inf measure_theory.filtration.has_inf, inf_le_left := _, inf_le_right := _, le_inf := _, Sup := has_Sup.Sup measure_theory.filtration.has_Sup, le_Sup := _, Sup_le := _, Inf := has_Inf.Inf measure_theory.filtration.has_Inf, Inf_le := _, le_Inf := _, top := ⊤, bot := ⊥, le_top := _, bot_le := _}
- sigma_finite : ∀ (i : ι), measure_theory.sigma_finite (μ.trim _)
A measure is σ-finite with respect to filtration if it is σ-finite with respect to all the sub-σ-algebra of the filtration.
Instances of this typeclass
Given a integrable function g
, the conditional expectations of g
with respect to a
filtration is uniformly integrable.
Given a sequence of measurable sets (sₙ)
, filtration_of_set
is the smallest filtration
such that sₙ
is measurable with respect to the n
-the sub-σ-algebra in filtration_of_set
.
Given a sequence of functions, the natural filtration is the smallest sequence of σ-algebras such that that sequence of functions is measurable with respect to the filtration.
Equations
- measure_theory.filtration.natural u hum = {seq := λ (i : ι), ⨆ (j : ι) (H : j ≤ i), measurable_space.comap (u j) mβ, mono' := _, le' := _}
Given a process f
and a filtration ℱ
, if f
converges to some g
almost everywhere and
g
is ⨆ n, ℱ n
-measurable, then limit_process f ℱ μ
chooses said g
, else it returns 0.
This definition is used to phrase the a.e. martingale convergence theorem
submartingale.ae_tendsto_limit_process
where an L¹-bounded submartingale f
adapted to ℱ
converges to limit_process f ℱ μ
μ
-almost everywhere.
Equations
- measure_theory.filtration.limit_process f ℱ μ = dite (∃ (g : Ω → E), measure_theory.strongly_measurable g ∧ ∀ᵐ (ω : Ω) ∂μ, filter.tendsto (λ (n : ι), f n ω) filter.at_top (nhds (g ω))) (λ (h : ∃ (g : Ω → E), measure_theory.strongly_measurable g ∧ ∀ᵐ (ω : Ω) ∂μ, filter.tendsto (λ (n : ι), f n ω) filter.at_top (nhds (g ω))), classical.some h) (λ (h : ¬∃ (g : Ω → E), measure_theory.strongly_measurable g ∧ ∀ᵐ (ω : Ω) ∂μ, filter.tendsto (λ (n : ι), f n ω) filter.at_top (nhds (g ω))), 0)