# mathlib3documentation

geometry.manifold.vector_bundle.fiberwise_linear

# The groupoid of smooth, fiberwise-linear maps #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

This file contains preliminaries for the definition of a smooth vector bundle: an associated structure_groupoid, the groupoid of smooth_fiberwise_linear functions.

### The groupoid of smooth, fiberwise-linear maps #

def fiberwise_linear.local_homeomorph {𝕜 : Type u_1} {B : Type u_2} {F : Type u_3} [ F] {U : set B} (φ : B (F ≃L[𝕜] F)) (hU : is_open U) (hφ : continuous_on (λ (x : B), (φ x)) U) (h2φ : continuous_on (λ (x : B), ((φ x).symm)) U) :
local_homeomorph (B × F) (B × F)

For B a topological space and F a 𝕜-normed space, a map from U : set B to F ≃L[𝕜] F determines a local homeomorphism from B × F to itself by its action fiberwise.

Equations
theorem fiberwise_linear.trans_local_homeomorph_apply {𝕜 : Type u_1} {B : Type u_2} {F : Type u_3} [ F] {φ φ' : B (F ≃L[𝕜] F)} {U U' : set B} (hU : is_open U) (hφ : continuous_on (λ (x : B), (φ x)) U) (h2φ : continuous_on (λ (x : B), ((φ x).symm)) U) (hU' : is_open U') (hφ' : continuous_on (λ (x : B), (φ' x)) U') (h2φ' : continuous_on (λ (x : B), ((φ' x).symm)) U') (b : B) (v : F) :
h2φ).trans hφ' h2φ')) (b, v) = (b, (φ' b) ((φ b) v))

Compute the composition of two local homeomorphisms induced by fiberwise linear equivalences.

theorem fiberwise_linear.source_trans_local_homeomorph {𝕜 : Type u_1} {B : Type u_2} {F : Type u_3} [ F] {φ φ' : B (F ≃L[𝕜] F)} {U U' : set B} (hU : is_open U) (hφ : continuous_on (λ (x : B), (φ x)) U) (h2φ : continuous_on (λ (x : B), ((φ x).symm)) U) (hU' : is_open U') (hφ' : continuous_on (λ (x : B), (φ' x)) U') (h2φ' : continuous_on (λ (x : B), ((φ' x).symm)) U') :
h2φ).trans hφ' h2φ')).to_local_equiv.source = (U U') ×ˢ set.univ

Compute the source of the composition of two local homeomorphisms induced by fiberwise linear equivalences.

theorem fiberwise_linear.target_trans_local_homeomorph {𝕜 : Type u_1} {B : Type u_2} {F : Type u_3} [ F] {φ φ' : B (F ≃L[𝕜] F)} {U U' : set B} (hU : is_open U) (hφ : continuous_on (λ (x : B), (φ x)) U) (h2φ : continuous_on (λ (x : B), ((φ x).symm)) U) (hU' : is_open U') (hφ' : continuous_on (λ (x : B), (φ' x)) U') (h2φ' : continuous_on (λ (x : B), ((φ' x).symm)) U') :
h2φ).trans hφ' h2φ')).to_local_equiv.target = (U U') ×ˢ set.univ

Compute the target of the composition of two local homeomorphisms induced by fiberwise linear equivalences.

theorem smooth_fiberwise_linear.locality_aux₁ {𝕜 : Type u_1} {B : Type u_2} {F : Type u_3} [ F] {EB : Type u_4} [ EB] {HB : Type u_5} [ B] {IB : HB} (e : local_homeomorph (B × F) (B × F)) (h : (p : B × F), ( (s : set (B × F)), p s (φ : B (F ≃L[𝕜] F)) (u : set B) (hu : is_open u) (hφ : (F →L[𝕜] F)) (λ (x : B), (φ x)) u) (h2φ : (F →L[𝕜] F)) (λ (x : B), ((φ x).symm)) u), (e.restr s).eq_on_source _))) :
(U : set B) (hU : , (x : B), x U ( (φ : B (F ≃L[𝕜] F)) (u : set B) (hu : is_open u) (huU : u U) (hux : x u) (hφ : (F →L[𝕜] F)) (λ (x : B), (φ x)) u) (h2φ : (F →L[𝕜] F)) (λ (x : B), ((φ x).symm)) u), (e.restr (u ×ˢ set.univ)).eq_on_source _))

Let e be a local homeomorphism of B × F. Suppose that at every point p in the source of e, there is some neighbourhood s of p on which e is equal to a bi-smooth fiberwise linear local homeomorphism. Then the source of e is of the form U ×ˢ univ, for some set U in B, and, at any point x in U, admits a neighbourhood u of x such that e is equal on u ×ˢ univ to some bi-smooth fiberwise linear local homeomorphism.

theorem smooth_fiberwise_linear.locality_aux₂ {𝕜 : Type u_1} {B : Type u_2} {F : Type u_3} [ F] {EB : Type u_4} [ EB] {HB : Type u_5} [ B] {IB : HB} (e : local_homeomorph (B × F) (B × F)) (U : set B) (hU : e.to_local_equiv.source = ) (h : (x : B), x U ( (φ : B (F ≃L[𝕜] F)) (u : set B) (hu : is_open u) (hUu : u U) (hux : x u) (hφ : (F →L[𝕜] F)) (λ (x : B), (φ x)) u) (h2φ : (F →L[𝕜] F)) (λ (x : B), ((φ x).symm)) u), (e.restr (u ×ˢ set.univ)).eq_on_source _))) :
(Φ : B (F ≃L[𝕜] F)) (U : set B) (hU₀ : is_open U) (hΦ : (F →L[𝕜] F)) (λ (x : B), (Φ x)) U) (h2Φ : (F →L[𝕜] F)) (λ (x : B), ((Φ x).symm)) U), e.eq_on_source _)

Let e be a local homeomorphism of B × F whose source is U ×ˢ univ, for some set U in B, and which, at any point x in U, admits a neighbourhood u of x such that e is equal on u ×ˢ univ to some bi-smooth fiberwise linear local homeomorphism. Then e itself is equal to some bi-smooth fiberwise linear local homeomorphism.

This is the key mathematical point of the locality condition in the construction of the structure_groupoid of bi-smooth fiberwise linear local homeomorphisms. The proof is by gluing together the various bi-smooth fiberwise linear local homeomorphism which exist locally.

The U in the conclusion is the same U as in the hypothesis. We state it like this, because this is exactly what we need for smooth_fiberwise_linear.

def smooth_fiberwise_linear {𝕜 : Type u_1} (B : Type u_2) (F : Type u_3) [ F] {EB : Type u_4} [ EB] {HB : Type u_5} [ B] (IB : HB) :

For B a manifold and F a normed space, the groupoid on B × F consisting of local homeomorphisms which are bi-smooth and fiberwise linear, and induce the identity on B. When a (topological) vector bundle is smooth, then the composition of charts associated to the vector bundle belong to this groupoid.

Equations
Instances for smooth_fiberwise_linear
@[simp]
theorem mem_smooth_fiberwise_linear_iff {𝕜 : Type u_1} (B : Type u_2) (F : Type u_3) [ F] {EB : Type u_4} [ EB] {HB : Type u_5} [ B] (IB : HB) (e : local_homeomorph (B × F) (B × F)) :
e IB (φ : B (F ≃L[𝕜] F)) (U : set B) (hU : is_open U) (hφ : (F →L[𝕜] F)) (λ (x : B), (φ x)) U) (h2φ : (F →L[𝕜] F)) (λ (x : B), ((φ x).symm)) U), e.eq_on_source _)