Sheafed spaces #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Introduces the category of topological spaces equipped with a sheaf (taking values in an
arbitrary target category C
.)
We further describe how to apply functors and natural transformations to the values of the presheaves.
- to_PresheafedSpace : algebraic_geometry.PresheafedSpace C
- is_sheaf : self.to_PresheafedSpace.presheaf.is_sheaf
A SheafedSpace C
is a topological space equipped with a sheaf of C
s.
Instances for algebraic_geometry.SheafedSpace
Equations
Extract the sheaf C (X : Top)
from a SheafedSpace C
.
Equations
The trivial unit
valued sheaf on any topological space.
Equations
- algebraic_geometry.SheafedSpace.unit X = {to_PresheafedSpace := {carrier := (algebraic_geometry.PresheafedSpace.const X {as := punit.star}).carrier, presheaf := (algebraic_geometry.PresheafedSpace.const X {as := punit.star}).presheaf}, is_sheaf := _}
Equations
- algebraic_geometry.SheafedSpace.category_theory.category = show category_theory.category (category_theory.induced_category (algebraic_geometry.PresheafedSpace C) algebraic_geometry.SheafedSpace.to_PresheafedSpace), from category_theory.induced_category.category algebraic_geometry.SheafedSpace.to_PresheafedSpace
Forgetting the sheaf condition is a functor from SheafedSpace C
to PresheafedSpace C
.
Equations
Instances for algebraic_geometry.SheafedSpace.forget_to_PresheafedSpace
- algebraic_geometry.SheafedSpace.forget_to_PresheafedSpace.full
- algebraic_geometry.SheafedSpace.forget_to_PresheafedSpace.faithful
- algebraic_geometry.SheafedSpace.forget_to_PresheafedSpace.category_theory.creates_colimits
- algebraic_geometry.SheafedSpace.is_open_immersion.forget_creates_pullback_of_left
- algebraic_geometry.SheafedSpace.is_open_immersion.forget_creates_pullback_of_right
The forgetful functor from SheafedSpace
to Top
.
Equations
- algebraic_geometry.SheafedSpace.forget C = {obj := λ (X : algebraic_geometry.SheafedSpace C), ↑X, map := λ (X Y : algebraic_geometry.SheafedSpace C) (f : X ⟶ Y), f.base, map_id' := _, map_comp' := _}
Instances for algebraic_geometry.SheafedSpace.forget
The restriction of a sheafed space along an open embedding into the space.
Equations
- X.restrict h = {to_PresheafedSpace := {carrier := (X.to_PresheafedSpace.restrict h).carrier, presheaf := (X.to_PresheafedSpace.restrict h).presheaf}, is_sheaf := _}
The restriction of a sheafed space X
to the top subspace is isomorphic to X
itself.
The global sections, notated Gamma.
Equations
- algebraic_geometry.SheafedSpace.forget_to_PresheafedSpace.category_theory.creates_colimits = {creates_colimits_of_shape := λ (J : Type v) (hJ : category_theory.category J), {creates_colimit := λ (K : J ⥤ algebraic_geometry.SheafedSpace C), category_theory.creates_colimit_of_fully_faithful_of_iso {to_PresheafedSpace := (algebraic_geometry.PresheafedSpace.colimit_cocone (K ⋙ algebraic_geometry.SheafedSpace.forget_to_PresheafedSpace)).X, is_sheaf := _} (category_theory.limits.colimit.iso_colimit_cocone {cocone := algebraic_geometry.PresheafedSpace.colimit_cocone (K ⋙ algebraic_geometry.SheafedSpace.forget_to_PresheafedSpace), is_colimit := algebraic_geometry.PresheafedSpace.colimit_cocone_is_colimit (K ⋙ algebraic_geometry.SheafedSpace.forget_to_PresheafedSpace)}).symm}}