mathlib3 documentation

algebra.category.Module.subobject

Subobjects in the category of R-modules #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

We construct an explicit order isomorphism between the categorical subobjects of an R-module M and its submodules. This immediately implies that the category of R-modules is well-powered.

noncomputable def Module.subobject_Module {R : Type u} [ring R] (M : Module R) :

The categorical subobjects of a module M are in one-to-one correspondence with its submodules.

Equations
@[protected, instance]

Bundle an element m : M such that f m = 0 as a term of kernel_subobject f.

Equations
@[ext]

An extensionality lemma showing that two elements of a cokernel by an image are equal if they differ by an element of the image.

The application is for homology: two elements in homology are equal if they differ by a boundary.