Limit preservation properties of functor.op
and related constructions #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We formulate conditions about F
which imply that F.op
, F.unop
, F.left_op
and F.right_op
preserve certain (co)limits.
Future work #
- Dually, it is possible to formulate conditions about
F.op
ec. forF
to preserve certain (co)limits.
If F : C ⥤ D
preserves colimits of K.left_op : Jᵒᵖ ⥤ C
, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves
limits of K : J ⥤ Cᵒᵖ
.
Equations
- category_theory.limits.preserves_limit_op K F = {preserves := λ (c : category_theory.limits.cone K) (hc : category_theory.limits.is_limit c), category_theory.limits.is_limit_cone_right_op_of_cocone (K.left_op ⋙ F) (category_theory.limits.is_colimit_of_preserves F (category_theory.limits.is_colimit_cocone_left_op_of_cone K hc))}
If F : C ⥤ Dᵒᵖ
preserves colimits of K.left_op : Jᵒᵖ ⥤ C
, then F.left_op : Cᵒᵖ ⥤ D
preserves limits of K : J ⥤ Cᵒᵖ
.
Equations
- category_theory.limits.preserves_limit_left_op K F = {preserves := λ (c : category_theory.limits.cone K) (hc : category_theory.limits.is_limit c), category_theory.limits.is_limit_cone_unop_of_cocone (K.left_op ⋙ F) (category_theory.limits.is_colimit_of_preserves F (category_theory.limits.is_colimit_cocone_left_op_of_cone K hc))}
If F : Cᵒᵖ ⥤ D
preserves colimits of K.op : Jᵒᵖ ⥤ Cᵒᵖ
, then F.right_op : C ⥤ Dᵒᵖ
preserves
limits of K : J ⥤ C
.
Equations
- category_theory.limits.preserves_limit_right_op K F = {preserves := λ (c : category_theory.limits.cone K) (hc : category_theory.limits.is_limit c), category_theory.limits.is_limit_cone_right_op_of_cocone (K.op ⋙ F) (category_theory.limits.is_colimit_of_preserves F (category_theory.limits.is_colimit_cone_op K hc))}
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits of K.op : Jᵒᵖ ⥤ Cᵒᵖ
, then F.unop : C ⥤ D
preserves
limits of K : J ⥤ C
.
Equations
- category_theory.limits.preserves_limit_unop K F = {preserves := λ (c : category_theory.limits.cone K) (hc : category_theory.limits.is_limit c), category_theory.limits.is_limit_cone_unop_of_cocone (K.op ⋙ F) (category_theory.limits.is_colimit_of_preserves F (category_theory.limits.is_colimit_cone_op K hc))}
If F : C ⥤ D
preserves limits of K.left_op : Jᵒᵖ ⥤ C
, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves
colimits of K : J ⥤ Cᵒᵖ
.
Equations
- category_theory.limits.preserves_colimit_op K F = {preserves := λ (c : category_theory.limits.cocone K) (hc : category_theory.limits.is_colimit c), category_theory.limits.is_colimit_cocone_right_op_of_cone (K.left_op ⋙ F) (category_theory.limits.is_limit_of_preserves F (category_theory.limits.is_limit_cone_left_op_of_cocone K hc))}
If F : C ⥤ Dᵒᵖ
preserves limits of K.left_op : Jᵒᵖ ⥤ C
, then F.left_op : Cᵒᵖ ⥤ D
preserves
colimits of K : J ⥤ Cᵒᵖ
.
Equations
- category_theory.limits.preserves_colimit_left_op K F = {preserves := λ (c : category_theory.limits.cocone K) (hc : category_theory.limits.is_colimit c), category_theory.limits.is_colimit_cocone_unop_of_cone (K.left_op ⋙ F) (category_theory.limits.is_limit_of_preserves F (category_theory.limits.is_limit_cone_left_op_of_cocone K hc))}
If F : Cᵒᵖ ⥤ D
preserves limits of K.op : Jᵒᵖ ⥤ Cᵒᵖ
, then F.right_op : C ⥤ Dᵒᵖ
preserves
colimits of K : J ⥤ C
.
Equations
- category_theory.limits.preserves_colimit_right_op K F = {preserves := λ (c : category_theory.limits.cocone K) (hc : category_theory.limits.is_colimit c), category_theory.limits.is_colimit_cocone_right_op_of_cone (K.op ⋙ F) (category_theory.limits.is_limit_of_preserves F (category_theory.limits.is_limit_cocone_op K hc))}
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits of K.op : Jᵒᵖ ⥤ Cᵒᵖ
, then F.unop : C ⥤ D
preserves
colimits of K : J ⥤ C
.
Equations
- category_theory.limits.preserves_colimit_unop K F = {preserves := λ (c : category_theory.limits.cocone K) (hc : category_theory.limits.is_colimit c), category_theory.limits.is_colimit_cocone_unop_of_cone (K.op ⋙ F) (category_theory.limits.is_limit_of_preserves F (category_theory.limits.is_limit_cocone_op K hc))}
If F : C ⥤ D
preserves colimits of shape Jᵒᵖ
, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits of
shape J
.
Equations
- category_theory.limits.preserves_limits_of_shape_op J F = {preserves_limit := λ (K : J ⥤ Cᵒᵖ), category_theory.limits.preserves_limit_op K F}
If F : C ⥤ Dᵒᵖ
preserves colimits of shape Jᵒᵖ
, then F.left_op : Cᵒᵖ ⥤ D
preserves limits
of shape J
.
Equations
If F : Cᵒᵖ ⥤ D
preserves colimits of shape Jᵒᵖ
, then F.right_op : C ⥤ Dᵒᵖ
preserves limits
of shape J
.
Equations
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits of shape Jᵒᵖ
, then F.unop : C ⥤ D
preserves limits of
shape J
.
Equations
- category_theory.limits.preserves_limits_of_shape_unop J F = {preserves_limit := λ (K : J ⥤ C), category_theory.limits.preserves_limit_unop K F}
If F : C ⥤ D
preserves limits of shape Jᵒᵖ
, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits of
shape J
.
Equations
If F : C ⥤ Dᵒᵖ
preserves limits of shape Jᵒᵖ
, then F.left_op : Cᵒᵖ ⥤ D
preserves colimits
of shape J
.
Equations
If F : Cᵒᵖ ⥤ D
preserves limits of shape Jᵒᵖ
, then F.right_op : C ⥤ Dᵒᵖ
preserves colimits
of shape J
.
Equations
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits of shape Jᵒᵖ
, then F.unop : C ⥤ D
preserves colimits
of shape J
.
Equations
If F : C ⥤ D
preserves colimits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits.
Equations
If F : C ⥤ Dᵒᵖ
preserves colimits, then F.left_op : Cᵒᵖ ⥤ D
preserves limits.
Equations
If F : Cᵒᵖ ⥤ D
preserves colimits, then F.right_op : C ⥤ Dᵒᵖ
preserves limits.
Equations
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits, then F.unop : C ⥤ D
preserves limits.
Equations
If F : C ⥤ D
preserves limits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits.
Equations
If F : C ⥤ Dᵒᵖ
preserves limits, then F.left_op : Cᵒᵖ ⥤ D
preserves colimits.
Equations
If F : Cᵒᵖ ⥤ D
preserves limits, then F.right_op : C ⥤ Dᵒᵖ
preserves colimits.
Equations
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits, then F.unop : C ⥤ D
preserves colimits.
Equations
If F : C ⥤ D
preserves finite colimits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite
limits.
Equations
If F : C ⥤ Dᵒᵖ
preserves finite colimits, then F.left_op : Cᵒᵖ ⥤ D
preserves finite
limits.
Equations
If F : Cᵒᵖ ⥤ D
preserves finite colimits, then F.right_op : C ⥤ Dᵒᵖ
preserves finite
limits.
Equations
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite colimits, then F.unop : C ⥤ D
preserves finite
limits.
Equations
If F : C ⥤ D
preserves finite limits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite
colimits.
Equations
If F : C ⥤ Dᵒᵖ
preserves finite limits, then F.left_op : Cᵒᵖ ⥤ D
preserves finite
colimits.
Equations
If F : Cᵒᵖ ⥤ D
preserves finite limits, then F.right_op : C ⥤ Dᵒᵖ
preserves finite
colimits.
Equations
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite limits, then F.unop : C ⥤ D
preserves finite
colimits.