Equivariant homomorphisms #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Main definitions #
mul_action_hom M X Y
, the type of equivariant functions fromX
toY
, whereM
is a monoid that acts on the typesX
andY
.distrib_mul_action_hom M A B
, the type of equivariant additive monoid homomorphisms fromA
toB
, whereM
is a monoid that acts on the additive monoidsA
andB
.mul_semiring_action_hom M R S
, the type of equivariant ring homomorphisms fromR
toS
, whereM
is a monoid that acts on the ringsR
andS
.
The above types have corresponding classes:
smul_hom_class F M X Y
states thatF
is a type of bundledX → Y
homs preserving scalar multiplication byM
distrib_mul_action_hom_class F M A B
states thatF
is a type of bundledA → B
homs preserving the additive monoid structure and scalar multiplication byM
mul_semiring_action_hom_class F M R S
states thatF
is a type of bundledR → S
homs preserving the ring structure and scalar multiplication byM
Notations #
X →[M] Y
ismul_action_hom M X Y
.A →+[M] B
isdistrib_mul_action_hom M A B
.R →+*[M] S
ismul_semiring_action_hom M R S
.
Equivariant functions.
Instances for mul_action_hom
- mul_action_hom.has_sizeof_inst
- mul_action_hom.has_coe_to_fun
- mul_action_hom.smul_hom_class
- distrib_mul_action_hom.has_coe'
- coe : F → Π (a : X), (λ (_x : X), Y) a
- coe_injective' : function.injective smul_hom_class.coe
- map_smul : ∀ (f : F) (c : M) (x : X), ⇑f (c • x) = c • ⇑f x
smul_hom_class F M X Y
states that F
is a type of morphisms preserving
scalar multiplication by M
.
You should extend this class when you extend mul_action_hom
.
Instances of this typeclass
Instances of other typeclasses for smul_hom_class
- smul_hom_class.has_sizeof_inst
Equations
- mul_action_hom.has_coe_to_fun M' X Y = {coe := mul_action_hom.to_fun _inst_2}
Equations
- mul_action_hom.smul_hom_class M' X Y = {coe := mul_action_hom.to_fun _inst_2, coe_injective' := _, map_smul := _}
The inverse of a bijective equivariant map is equivariant.
Reinterpret an equivariant additive monoid homomorphism as an equivariant function.
Reinterpret an equivariant additive monoid homomorphism as an additive monoid homomorphism.
- to_fun : A → B
- map_smul' : ∀ (m : M) (x : A), self.to_fun (m • x) = m • self.to_fun x
- map_zero' : self.to_fun 0 = 0
- map_add' : ∀ (x y : A), self.to_fun (x + y) = self.to_fun x + self.to_fun y
Equivariant additive monoid homomorphisms.
Instances for distrib_mul_action_hom
- distrib_mul_action_hom.has_sizeof_inst
- distrib_mul_action_hom.has_coe
- distrib_mul_action_hom.has_coe'
- distrib_mul_action_hom.has_coe_to_fun
- distrib_mul_action_hom.distrib_mul_action_hom_class
- distrib_mul_action_hom.has_zero
- distrib_mul_action_hom.has_one
- distrib_mul_action_hom.inhabited
- mul_semiring_action_hom.has_coe'
- distrib_mul_action_hom.linear_map.has_coe
- non_unital_alg_hom.distrib_mul_action_hom.has_coe
- coe : F → Π (a : A), (λ (_x : A), B) a
- coe_injective' : function.injective distrib_mul_action_hom_class.coe
- map_smul : ∀ (f : F) (c : M) (x : A), ⇑f (c • x) = c • ⇑f x
- map_add : ∀ (f : F) (x y : A), ⇑f (x + y) = ⇑f x + ⇑f y
- map_zero : ∀ (f : F), ⇑f 0 = 0
distrib_mul_action_hom_class F M A B
states that F
is a type of morphisms preserving
the additive monoid structure and scalar multiplication by M
.
You should extend this class when you extend distrib_mul_action_hom
.
Instances of this typeclass
Instances of other typeclasses for distrib_mul_action_hom_class
- distrib_mul_action_hom_class.has_sizeof_inst
Equations
- distrib_mul_action_hom.has_coe M A B = {coe := distrib_mul_action_hom.to_add_monoid_hom _inst_10}
Equations
- distrib_mul_action_hom.has_coe' M A B = {coe := distrib_mul_action_hom.to_mul_action_hom _inst_10}
Equations
- distrib_mul_action_hom.has_coe_to_fun M A B = {coe := distrib_mul_action_hom.to_fun _inst_10}
Equations
- distrib_mul_action_hom.distrib_mul_action_hom_class M A B = {coe := distrib_mul_action_hom.to_fun _inst_10, coe_injective' := _, map_smul := _, map_add := _, map_zero := _}
The identity map as an equivariant additive monoid homomorphism.
Equations
- distrib_mul_action_hom.has_one = {one := distrib_mul_action_hom.id M _inst_6}
Equations
Composition of two equivariant additive monoid homomorphisms.
The inverse of a bijective distrib_mul_action_hom
is a distrib_mul_action_hom
.
Reinterpret an equivariant ring homomorphism as an equivariant additive monoid homomorphism.
Reinterpret an equivariant ring homomorphism as a ring homomorphism.
- to_fun : R → S
- map_smul' : ∀ (m : M) (x : R), self.to_fun (m • x) = m • self.to_fun x
- map_zero' : self.to_fun 0 = 0
- map_add' : ∀ (x y : R), self.to_fun (x + y) = self.to_fun x + self.to_fun y
- map_one' : self.to_fun 1 = 1
- map_mul' : ∀ (x y : R), self.to_fun (x * y) = self.to_fun x * self.to_fun y
Equivariant ring homomorphisms.
Instances for mul_semiring_action_hom
- mul_semiring_action_hom.has_sizeof_inst
- mul_semiring_action_hom.has_coe
- mul_semiring_action_hom.has_coe'
- mul_semiring_action_hom.has_coe_to_fun
- mul_semiring_action_hom.mul_semiring_action_hom_class
- coe : F → Π (a : R), (λ (_x : R), S) a
- coe_injective' : function.injective mul_semiring_action_hom_class.coe
- map_smul : ∀ (f : F) (c : M) (x : R), ⇑f (c • x) = c • ⇑f x
- map_add : ∀ (f : F) (x y : R), ⇑f (x + y) = ⇑f x + ⇑f y
- map_zero : ∀ (f : F), ⇑f 0 = 0
- map_mul : ∀ (f : F) (x y : R), ⇑f (x * y) = ⇑f x * ⇑f y
- map_one : ∀ (f : F), ⇑f 1 = 1
mul_semiring_action_hom_class F M R S
states that F
is a type of morphisms preserving
the ring structure and scalar multiplication by M
.
You should extend this class when you extend mul_semiring_action_hom
.
Instances of this typeclass
Instances of other typeclasses for mul_semiring_action_hom_class
- mul_semiring_action_hom_class.has_sizeof_inst
Equations
- mul_semiring_action_hom.has_coe M R S = {coe := mul_semiring_action_hom.to_ring_hom _inst_20}
Equations
- mul_semiring_action_hom.has_coe' M R S = {coe := mul_semiring_action_hom.to_distrib_mul_action_hom _inst_20}
Equations
- mul_semiring_action_hom.mul_semiring_action_hom_class M R S = {coe := mul_semiring_action_hom.to_fun _inst_20, coe_injective' := _, map_smul := _, map_add := _, map_zero := _, map_mul := _, map_one := _}
The identity map as an equivariant ring homomorphism.
Composition of two equivariant additive monoid homomorphisms.