Iterations of a function #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file we prove simple properties of nat.iterate f n
a.k.a. f^[n]
:
-
iterate_zero
,iterate_succ
,iterate_succ'
,iterate_add
,iterate_mul
: formulas forf^[0]
,f^[n+1]
(two versions),f^[n+m]
, andf^[n*m]
; -
iterate_id
:id^[n]=id
; -
injective.iterate
,surjective.iterate
,bijective.iterate
: iterates of an injective/surjective/bijective function belong to the same class; -
left_inverse.iterate
,right_inverse.iterate
,commute.iterate_left
,commute.iterate_right
,commute.iterate_iterate
: some properties of pairs of functions survive under iterations -
iterate_fixed
,semiconj.iterate_*
,semiconj₂.iterate
: iff
fixes a point (resp., semiconjugates unary/binary operarations), then so doesf^[n]
.