mathlib3 documentation

field_theory.galois

Galois Extensions #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

In this file we define Galois extensions as extensions which are both separable and normal.

Main definitions #

Main results #

Together, these two results prove the Galois correspondence.

@[class]
structure is_galois (F : Type u_1) [field F] (E : Type u_2) [field E] [algebra F E] :
Prop

A field extension E/F is galois if it is both separable and normal. Note that in mathlib a separable extension of fields is by definition algebraic.

Instances of this typeclass
theorem is_galois_iff {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] :
@[protected, instance]
def is_galois.self (F : Type u_1) [field F] :
theorem is_galois.integral (F : Type u_1) [field F] {E : Type u_2} [field E] [algebra F E] [is_galois F E] (x : E) :
theorem is_galois.separable (F : Type u_1) [field F] {E : Type u_2} [field E] [algebra F E] [is_galois F E] (x : E) :
theorem is_galois.splits (F : Type u_1) [field F] {E : Type u_2} [field E] [algebra F E] [is_galois F E] (x : E) :
@[protected, instance]
theorem is_galois.tower_top_of_is_galois (F : Type u_1) (K : Type u_2) (E : Type u_3) [field F] [field K] [field E] [algebra F K] [algebra F E] [algebra K E] [is_scalar_tower F K E] [is_galois F E] :
@[protected, instance]
def is_galois.tower_top_intermediate_field {F : Type u_1} {E : Type u_3} [field F] [field E] [algebra F E] (K : intermediate_field F E) [h : is_galois F E] :
theorem is_galois_iff_is_galois_bot {F : Type u_1} {E : Type u_3} [field F] [field E] [algebra F E] :
theorem is_galois.of_alg_equiv {F : Type u_1} {E : Type u_3} [field F] [field E] {E' : Type u_4} [field E'] [algebra F E'] [algebra F E] [h : is_galois F E] (f : E ≃ₐ[F] E') :
theorem alg_equiv.transfer_galois {F : Type u_1} {E : Type u_3} [field F] [field E] {E' : Type u_4} [field E'] [algebra F E'] [algebra F E] (f : E ≃ₐ[F] E') :
theorem is_galois_iff_is_galois_top {F : Type u_1} {E : Type u_3} [field F] [field E] [algebra F E] :
@[protected, instance]
def is_galois_bot {F : Type u_1} {E : Type u_3} [field F] [field E] [algebra F E] :
def fixed_points.intermediate_field {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] (M : Type u_3) [monoid M] [mul_semiring_action M E] [smul_comm_class M F E] :

The intermediate field of fixed points fixed by a monoid action that commutes with the F-action on E.

Equations
def intermediate_field.fixed_field {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] (H : subgroup (E ≃ₐ[F] E)) :

The intermediate_field fixed by a subgroup

Equations
Instances for intermediate_field.fixed_field
def intermediate_field.fixing_subgroup {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] (K : intermediate_field F E) :

The subgroup fixing an intermediate_field

Equations

The fixing_subgroup of K : intermediate_field F E is isomorphic to E ≃ₐ[K] E

Equations

The Galois correspondence from intermediate fields to subgroups

Equations
theorem is_galois.of_separable_splitting_field {F : Type u_1} [field F] {E : Type u_2} [field E] [algebra F E] {p : polynomial F} [sp : polynomial.is_splitting_field F E p] (hp : p.separable) :

Equivalent characterizations of a Galois extension of finite degree

@[protected, instance]
def is_galois.normal_closure (k : Type u_1) (K : Type u_2) (F : Type u_3) [field k] [field K] [field F] [algebra k K] [algebra k F] [algebra K F] [is_scalar_tower k K F] [is_galois k F] :
@[protected, instance]
def is_alg_closure.is_galois (k : Type u_1) (K : Type u_2) [field k] [field K] [algebra k K] [is_alg_closure k K] [char_zero k] :