mathlib3 documentation

analysis.convex.body

Convex bodies #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

This file contains the definition of the type convex_body V consisting of convex, compact, nonempty subsets of a real topological vector space V.

convex_body V is a module over the nonnegative reals (nnreal) and a pseudo-metric space. If V is a normed space, convex_body V is a metric space.

TODO #

Tags #

convex, convex body

structure convex_body (V : Type u_2) [topological_space V] [add_comm_monoid V] [has_smul V] :
Type u_2

Let V be a real topological vector space. A subset of V is a convex body if and only if it is convex, compact, and nonempty.

Instances for convex_body
@[protected]
@[protected]
@[protected]
@[protected, ext]
theorem convex_body.ext {V : Type u_1} [topological_space V] [add_comm_group V] [module V] {K L : convex_body V} (h : K = L) :
K = L
@[simp]
theorem convex_body.coe_mk {V : Type u_1} [topological_space V] [add_comm_group V] [module V] (s : set V) (h₁ : convex s) (h₂ : is_compact s) (h₃ : s.nonempty) :
{carrier := s, convex' := h₁, is_compact' := h₂, nonempty' := h₃} = s
@[simp]
@[protected, instance]
Equations
@[simp]
@[protected, instance]

The convex bodies in a fixed space $V$ form a module over the nonnegative reals.

Equations
@[protected, instance]

Convex bodies in a fixed seminormed space $V$ form a pseudo-metric space under the Hausdorff metric.

Equations
@[protected, instance]

Convex bodies in a fixed normed space V form a metric space under the Hausdorff metric.

Equations