Discriminant of a family of vectors #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Given an A-algebra B and b, an ι-indexed family of elements of B, we define the
discriminant of b as the determinant of the matrix whose (i j)-th element is the trace of
b i * b j.
Main definition #
algebra.discr A b: the discriminant ofb : ι → B.
Main results #
algebra.discr_zero_of_not_linear_independent: ifbis not linear independent, thenalgebra.discr A b = 0.algebra.discr_of_matrix_vec_mulanddiscr_of_matrix_mul_vec: formulas relatingalgebra.discr A ι bwithalgebra.discr A ((P.map (algebra_map A B)).vec_mul b)andalgebra.discr A ((P.map (algebra_map A B)).mul_vec b).algebra.discr_not_zero_of_basis: over a field, ifbis a basis, thenalgebra.discr K b ≠ 0.algebra.discr_eq_det_embeddings_matrix_reindex_pow_two: ifL/Kis a field extension andb : ι → L, thendiscr K bis the square of the determinant of the matrix whose(i, j)coefficient isσⱼ (b i), whereσⱼ : L →ₐ[K] Eis the embedding in an algebraically closed fieldEcorresponding toj : ιvia a bijectione : ι ≃ (L →ₐ[K] E).algebra.discr_of_power_basis_eq_prod: the discriminant of a power basis.discr_is_integral: ifKandLare fields andis_scalar_tower R K L, isb : ι → Lsatisfies∀ i, is_integral R (b i), thenis_integral R (discr K b).discr_mul_is_integral_mem_adjoin: letKbe the fraction field of an integrally closed domainRand letLbe a finite separable extension ofK. LetB : power_basis K Lbe such thatis_integral R B.gen. Then for all,z : Lwe have(discr K B.basis) • z ∈ adjoin R ({B.gen} : set L).
Implementation details #
Our definition works for any A-algebra B, but note that if B is not free as an A-module,
then trace A B = 0 by definition, so discr A b = 0 for any b.
Given an A-algebra B and b, an ι-indexed family of elements of B, we define
discr A ι b as the determinant of trace_matrix A ι b.
Equations
- algebra.discr A b = (algebra.trace_matrix A b).det
If b is not linear independent, then algebra.discr A b = 0.
Relation between algebra.discr A ι b and
algebra.discr A ((P.map (algebra_map A B)).vec_mul b).
Relation between algebra.discr A ι b and
algebra.discr A ((P.map (algebra_map A B)).mul_vec b).
Over a field, if b is a basis, then algebra.discr K b ≠ 0.
Over a field, if b is a basis, then algebra.discr K b is a unit.
If L/K is a field extension and b : ι → L, then discr K b is the square of the
determinant of the matrix whose (i, j) coefficient is σⱼ (b i), where σⱼ : L →ₐ[K] E is the
embedding in an algebraically closed field E corresponding to j : ι via a bijection
e : ι ≃ (L →ₐ[K] E).
The discriminant of a power basis.
A variation of of_power_basis_eq_prod.
A variation of of_power_basis_eq_prod.
Formula for the discriminant of a power basis using the norm of the field extension.
If K and L are fields and is_scalar_tower R K L, and b : ι → L satisfies
∀ i, is_integral R (b i), then is_integral R (discr K b).
If b and b' are ℚ-bases of a number field K such that
∀ i j, is_integral ℤ (b.to_matrix b' i j) and ∀ i j, is_integral ℤ (b'.to_matrix b i j) then
discr ℚ b = discr ℚ b'.
Let K be the fraction field of an integrally closed domain R and let L be a finite
separable extension of K. Let B : power_basis K L be such that is_integral R B.gen.
Then for all, z : L that are integral over R, we have
(discr K B.basis) • z ∈ adjoin R ({B.gen} : set L).