Discriminant of a family of vectors #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Given an A
-algebra B
and b
, an ι
-indexed family of elements of B
, we define the
discriminant of b
as the determinant of the matrix whose (i j)
-th element is the trace of
b i * b j
.
Main definition #
algebra.discr A b
: the discriminant ofb : ι → B
.
Main results #
algebra.discr_zero_of_not_linear_independent
: ifb
is not linear independent, thenalgebra.discr A b = 0
.algebra.discr_of_matrix_vec_mul
anddiscr_of_matrix_mul_vec
: formulas relatingalgebra.discr A ι b
withalgebra.discr A ((P.map (algebra_map A B)).vec_mul b)
andalgebra.discr A ((P.map (algebra_map A B)).mul_vec b)
.algebra.discr_not_zero_of_basis
: over a field, ifb
is a basis, thenalgebra.discr K b ≠ 0
.algebra.discr_eq_det_embeddings_matrix_reindex_pow_two
: ifL/K
is a field extension andb : ι → L
, thendiscr K b
is the square of the determinant of the matrix whose(i, j)
coefficient isσⱼ (b i)
, whereσⱼ : L →ₐ[K] E
is the embedding in an algebraically closed fieldE
corresponding toj : ι
via a bijectione : ι ≃ (L →ₐ[K] E)
.algebra.discr_of_power_basis_eq_prod
: the discriminant of a power basis.discr_is_integral
: ifK
andL
are fields andis_scalar_tower R K L
, isb : ι → L
satisfies∀ i, is_integral R (b i)
, thenis_integral R (discr K b)
.discr_mul_is_integral_mem_adjoin
: letK
be the fraction field of an integrally closed domainR
and letL
be a finite separable extension ofK
. LetB : power_basis K L
be such thatis_integral R B.gen
. Then for all,z : L
we have(discr K B.basis) • z ∈ adjoin R ({B.gen} : set L)
.
Implementation details #
Our definition works for any A
-algebra B
, but note that if B
is not free as an A
-module,
then trace A B = 0
by definition, so discr A b = 0
for any b
.
Given an A
-algebra B
and b
, an ι
-indexed family of elements of B
, we define
discr A ι b
as the determinant of trace_matrix A ι b
.
Equations
- algebra.discr A b = (algebra.trace_matrix A b).det
If b
is not linear independent, then algebra.discr A b = 0
.
Relation between algebra.discr A ι b
and
algebra.discr A ((P.map (algebra_map A B)).vec_mul b)
.
Relation between algebra.discr A ι b
and
algebra.discr A ((P.map (algebra_map A B)).mul_vec b)
.
Over a field, if b
is a basis, then algebra.discr K b ≠ 0
.
Over a field, if b
is a basis, then algebra.discr K b
is a unit.
If L/K
is a field extension and b : ι → L
, then discr K b
is the square of the
determinant of the matrix whose (i, j)
coefficient is σⱼ (b i)
, where σⱼ : L →ₐ[K] E
is the
embedding in an algebraically closed field E
corresponding to j : ι
via a bijection
e : ι ≃ (L →ₐ[K] E)
.
The discriminant of a power basis.
A variation of of_power_basis_eq_prod
.
A variation of of_power_basis_eq_prod
.
Formula for the discriminant of a power basis using the norm of the field extension.
If K
and L
are fields and is_scalar_tower R K L
, and b : ι → L
satisfies
∀ i, is_integral R (b i)
, then is_integral R (discr K b)
.
If b
and b'
are ℚ
-bases of a number field K
such that
∀ i j, is_integral ℤ (b.to_matrix b' i j)
and ∀ i j, is_integral ℤ (b'.to_matrix b i j)
then
discr ℚ b = discr ℚ b'
.
Let K
be the fraction field of an integrally closed domain R
and let L
be a finite
separable extension of K
. Let B : power_basis K L
be such that is_integral R B.gen
.
Then for all, z : L
that are integral over R
, we have
(discr K B.basis) • z ∈ adjoin R ({B.gen} : set L)
.