Topological simplices #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We define the natural functor from simplex_category
to Top
sending [n]
to the
topological n
-simplex.
This is used to define Top.to_sSet
in algebraic_topology.simpliciaL_set
.
The topological simplex associated to x : simplex_category
.
This is the object part of the functor simplex_category.to_Top
.
Equations
- x.to_Top_obj = {f : ↥x → nnreal | finset.univ.sum (λ (i : ↥x), f i) = 1}
Instances for ↥simplex_category.to_Top_obj
@[protected, instance]
def
simplex_category.to_Top_obj.has_coe_to_fun
(x : simplex_category) :
has_coe_to_fun ↥(x.to_Top_obj) (λ (_x : ↥(x.to_Top_obj)), ↥x → nnreal)
Equations
- simplex_category.to_Top_obj.has_coe_to_fun x = {coe := λ (f : ↥(x.to_Top_obj)), ↑f}
@[ext]
def
simplex_category.to_Top_map
{x y : simplex_category}
(f : x ⟶ y) :
↥(x.to_Top_obj) → ↥(y.to_Top_obj)
A morphism in simplex_category
induces a map on the associated topological spaces.
Equations
- simplex_category.to_Top_map f = λ (g : ↥(x.to_Top_obj)), ⟨λ (i : ↥y), (finset.filter (λ (k : ↥x), ⇑f k = i) finset.univ).sum (λ (j : ↥x), ⇑g j), _⟩
@[simp]
theorem
simplex_category.coe_to_Top_map
{x y : simplex_category}
(f : x ⟶ y)
(g : ↥(x.to_Top_obj))
(i : ↥y) :
⇑(simplex_category.to_Top_map f g) i = (finset.filter (λ (k : ↥x), ⇑f k = i) finset.univ).sum (λ (j : ↥x), ⇑g j)
@[continuity]
The functor associating the topological n
-simplex to [n] : simplex_category
.
Equations
- simplex_category.to_Top = {obj := λ (x : simplex_category), Top.of ↥(x.to_Top_obj), map := λ (x y : simplex_category) (f : x ⟶ y), {to_fun := simplex_category.to_Top_map f, continuous_to_fun := _}, map_id' := simplex_category.to_Top._proof_1, map_comp' := simplex_category.to_Top._proof_2}
@[simp]
theorem
simplex_category.to_Top_map_apply
(x y : simplex_category)
(f : x ⟶ y)
(ᾰ : ↥(x.to_Top_obj)) :
@[simp]